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Abstract

We propose a modification of a sequential convex programming (SCP) method
that ensures feasibility subject to a given set of convex inequality constraints.
The resulting procedure is called feasible sequential convex programming method
(FSCP). FSCP expands the standard analytical subproblem which is convex, sepa-
rable and consists of inverse terms, by these nonlinear, convex feasibility constraints.
It is guaranteed that objective function and the remaining constraints are evaluated
only at feasible iterates. A line search based on an augmented Lagrangian merit
function is performed to guarantee global convergence, i.e., the approximation of
a KKT point. Our main motivation is to solve free material optimization (FMO)
problems, i.e., generalized topology optimization problems. Design variables are the
material properties represented by elasticity tensors or elementary material matri-
ces, respectively, based on a given finite element discretization. Material properties
are as general as possible, i.e., anisotropic, with the only restriction that the elas-
ticity tensors are positive definite throughout the algorithm, to guarantee a positive
definite global stiffness matrix for computing design constraints. The tensors may
be arbitrarily small in case of vanishing material. Numerical results are presented
with up to 120.000 variables and 60.000 constraints.
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PLATO-N - A PLAtform for Topology Optimisation incorporating Novel, Large-Scale, Free-Material
Optimisation and Mixed Integer Programming Methods
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1 Introduction

A strictly feasible sequential convex programming algorithm (FSCP) is presented. The
goal is to generate an iteration sequence which is strictly feasible subject to a given subset
of constraints, called the feasibility constraints, while the remaining constraints may be
violated. Typical applications are square roots or logarithmic functions of analytical
expressions needed to evaluate objective function or constraints, where the arguments
of roots or logarithmic functions are nonlinear terms. We proceed from the following
formulation,

min
x

f (x) x ∈ R
n

s.t. cj (x) ≤ 0, j = 1, . . . , m

ej (x) ≤ 0, j = 1, . . . , mf

(1)

All functions must be smooth, i.e., twice continuously differentiable on the whole Rn.
Feasibility constraints are denoted by ej (x) , j = 1, . . . , mf . It is assumed that the
remaining constraints cj (x) , j = 1, . . . , mc, and the objective function f (x) can only be
evaluated on the feasible set

F := {x ∈ R
n | ej (x) ≤ 0, j = 1, . . . , mf } . (2)

To simplify the subsequent analysis and the notation, we suppress equality and box
constraints. As usual, nonlinear equality constraints are linearized and box constraints
are handled as nonlinear inequality constraints throughout the theoretical investigations.
Our implementation takes them into account.

Our main motivation is to solve free material optimization (FMO) problems, see Bendsøe
et al. [7], which is an extension of topology optimization, see Bendsøe and Sigmund [8].
Within a given design space, topology optimization finds the optimal material layout for
a given set of loads and given material. An underlying finite element discretization is used
to decide in each element whether to use material or not. The stiffness of the structure
is defined by the so-called compliance function, which measures the displacement of the
structure under loads. The smaller the compliance the stiffer the resulting structure. In
addition, the total amount of material is bounded. To prevent numerical instabilities, i.e.,
checkerboard phenomena or grey zones, a filter can be used, see Ni, Zillober and Schitt-
kowski [36]. Topology optimization problems are large-scale nonlinear programs, that can
be solved efficiently by appropriate algorithms, e.g., the method of moving asymptotes of
Svanberg [48] or Sigmund [45]. The resulting structure consists of void and material.

Free material optimization (FMO) is introduced in a series of papers, e.g., Bendsøe
et al. [7], Bendsøe and Dı́az [6], Bendsøe [5] and Zowe, Kočvara and Bendsøe [62]. FMO
tries to find the best mechanical structure with respect to one or more given load cases in
the sense that a design criterion, e.g., minimal weight or maximal stiffness, is obtained.
The material properties as well as the material distribution in the available space are
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included in the optimization process. Therefore, FMO is a generalization of topology
optimization. As shown, e.g., by Kočvara and Stingl [30], the FMO problem can be
formulated for a given set of loads by a nonlinear semidefinite programming (NSDP)
problem based on a finite element discretization. The common FMO formulation is to
minimize the maximal compliance fT

j K
−1 (E) fj for load fj, j = 1, . . . , l, where l is the

number of load cases and K (E) the global stiffness matrix. A more detailed description
is found in Hörnlein, Kočvara and Werner [24] and Kočvara and Zowe [31]. As a measure
of the material stiffness, we use the traces of the elasticity matrices Ei, which are the
design or optimization variables. The elasticity matrices Ei, i = 1, . . . , m, fulfill the
basic requirements of linear elasticity, i.e., they are symmetric and positive semidefinite.
Moreover, volume constraints and box constraints preventing singularities are introduced.

The strictly feasible sequential convex programming (FSCP) method is an extension of
the sequential convex programming (SCP) method, which is frequently used in mechanical
engineering. The algorithm approximates the optimal solution by solving a sequence of
convex and separable subproblems, where a line search procedure with respect to the
augmented Lagrangian merit function is used for guaranteeing global convergence. SCP
was originally designed for solving structural mechanical optimization problems and it is
often applied in the field of topology optimization. Due to the fact that in some special
cases, typical structural constraints become linear in the inverse variables, a suitable
substitution is applied, which is expected to linearize these functions in some sense, see
Zillober, Schittkowski and Moritzen [60].

SCP methods are derived from the optimization method CONLIN, see Fleury and
Braibant [20] and Fleury [19]. The algorithm formulates convex and separable subprob-
lems by linearizing the problem functions with respect to reciprocal variables, if the par-
tial derivative is negative in the current iterate. Otherwise, it is linearized in the original
sense. Since the starting point must be close to a solution and since the method can oscil-
late, Svanberg [48] extended the algorithm proposing the method of moving asymptotes
(MMA). Two flexible asymptotes, a lower and an upper one, are introduced truncating
the feasible region. The functions are linearized with respect to one of the asymptotes,
depending on the sign of the partial derivative. The resulting convex and separable sub-
problems can be solved efficiently due to their special structure. The asymptotes are
adapted in each iteration, to control the curvature of the Lagrangian function and thus
influence the convergence.

SCP is an extension of MMA including a line search procedure to stabilize the al-
gorithm and too achieve a global convergence result. Iterates are excepted subject to a
merit function, which combines the descent of the objective function and the feasibility
in a suitable way. The stepsize is reduced until a descent in the merit function, e.g., the
augmented Lagrangian function, is obtained. An active set strategy can be applied to
reduce the size of the subproblem, saving computational effort. The program SCPIP30
is an efficient implementation of SCP, where the sparse structure of the gradients and
the Hessian is taken into account. Some comparative numerical tests of SCP, sequential
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quadratic programming (SQP) and some other nonlinear programming codes are avail-
able for test problems from mechanical structural optimization, see Schittkowski, Zillober
and Zotemantel [44]. For the resulting SCP method global convergence is shown, see
Zillober [55, 57].

Svanberg [49, 50, 51] presented extensions of the MMA method which are also globally
convergent due to additional inner iterations ensuring descent of the given functions over
the approximated ones. Ni [35] introduced a new version of MMA, where the convex
subproblems are in addition restricted by a trust region. In contrast to MMA and SCP, his
approach is only applicable for box constraints, while equality and inequality constraints
cannot be handled. Ertel [15] combined the method of moving asymptotes with the filter
approach proposed by Fletcher and Leyffer [17]. An iterate is accepted, if a descent in the
objective function or a reduction of the constraint violation is obtained. Otherwise, the
point is rejected and a new subproblem is generated by reducing the distance between the
asymptotes. Filter methods induce a non-monotone iteration sequence. A convergence
proof for a SQP-filter method is given by Fletcher, Toint and Leyffer [18].

Stingl, Kočvara and Leugering [47] proposed a generalization of SCP for semidefinite
programs of the form

min
Z

f (Z) Z ∈ Sn

s.t. cj (Z) ≤ 0, j = 1, . . . , mc

Z − Z � 0

Z − Z � 0

(3)

where Sn denotes the space of symmetric matrices of size n. The algorithm creates a
sequence of first order block-separable convex approximations. In contrast to MMA and
SCP, the method uses constant asymptotes. Moreover, a line search procedure is applied
to ensure a sufficient descent of objective function values. The resulting semidefinite
subproblem can be solved efficiently due to its specific structure by appropriate solvers,
see Kočvara and Stingl [28]. Global convergence of the resulting algorithm can be shown,
see Stingl, Kočvara and Leugering [47].

Since SCP methods are often applied to solve practical topology optimization prob-
lems, they are also investigated for solving free material optimization problems. To guar-
antee positive definit elasticity tensors, feasibility constraints are introduced to guarantee
a positive definite total stiffness matrix. The SCP method of Zillober [55] is extended
to take feasibility constraints into account. They are supposed to be convex and passed
to the convex, analytical and separable subproblem which must be solved in each step
of an MMA algorithm. A line search is performed to ensure global convergence. The
corresponding convergence proof of the resulting feasible sequential convex programming
method is given for convex feasibility constraints.

In the literature, several feasible optimization methods can be found. The most im-
portant existing ones are feasible interior point methods, projection methods and feasible
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direction methods.

Feasible interior point methods start from the interior of the feasible region and com-
pute an iteration sequence that approaches the boundary. A subclass are barrier methods,
where a barrier parameter combines the constraints and the objective function. Typically
the barrier function is only defined on the feasible region and tends to infinity at the
boundary, e.g.,

f (x) + μ

mf∑
i=1

ln (−ej (x)) , (4)

where μ ∈ R+ is the barrier parameter. Starting with a large μ, it is reduced iteratively
such that solutions near the boundary can be obtained. These methods are especially
successful for convex optimization problems, see Jarre and Stoer [25].

Another class of feasible optimization methods are projection methods. In each iterate
x(k), the algorithms compute a search direction d(k) ∈ R

n and project the resulting point
x(k)+d(k) on the boundary of the feasible region, if necessary. The projected point on the
boundary is denoted by x

(k)
P ∈ Rn. The projected search direction d

(k)
P ∈ Rn consists of

two components. Inside the interior of the feasible region, the projected search direction
is given by d(k). The second part is described by the segment of the boundary between the
intersection point of d(k) with the boundary and the projection point x

(k)
P . A line search

is performed along the projected search direction d
(k)
P . To ensure feasibility, the problems

have to be convex. The effort to compute the projection depends on the algorithm and
on the constraints of the optimization problem. Some popular projection methods are
presented by Rosen [41, 42] and by Polak [40]. Projection methods are often combined
with other efficient nonlinear optimization methods to compute the descent direction
d(k). Jian, Zhang and Xue [26] developed a feasible SQP method in combination with a
projection method.

Starting from a feasible point, feasible direction methods compute a feasible direction
d(k) which ensures the existence of a descent step inside the feasible domain. If necessary,
a line search is applied. The first algorithms go back to Zoutendijk [61]. A convergence
proof can be given for convex constraints, see Bertsekas [10]. To improve the performance
and to get a higher convergence order, a quadratic subproblem similar to SQP methods.
The resulting search direction may not be feasible, since active constraints can lead to
a search direction tangential to the feasible region, see Panier and Tits [38]. Thus, a
correction is determined by tilting the original direction towards the feasible region. To
ensure fast convergence near a solution an additional search direction is computed by
bending. An extended line search is performed along the search arc consisting of all
three directions, such that feasibility and a sufficient descent in the objective function
is guaranteed. The computational complexity per iteration of the feasible SQP methods
is significantly higher compared to usual SQP methods. In state-of-the-art methods the
computational complexity has been reduced.
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Moreover, feasible direction interior point algorithms (FDIP) are developed. In gen-
eral, interior point methods (IPM) compute in each iteration a Newton descent direction
by solving a linear system of equations. The resulting search direction might not be a fea-
sible direction. Therefore, a second linear system is formulated where the right hand side
is perturbed ensuring a feasible direction. Some of the FDIP methods solve a third linear
system to ensure superlinear convergence near a stationary point. Analogue to feasible
SQP methods, a line search along the search arc is performed to ensure both feasibility
and a descent in the objective function. Several feasible direction interior point meth-
ods are given in the literature, e.g., Panier, Tits and Herskovits [39], Herskovits [21, 22],
Bakhtiari and Tits [3] and Zhu [54]. The globally and locally superlinear convergent
algorithm FAIPA belongs to the latest algorithms proposed, see Herskovits, Aroztegui,
Goulart and Dubeux [23]. In each iteration, a feasible descent arc is computed such that
a new interior point with a lower objective function value can be found. Three linear
systems have to be solved in each iteration, where the matrices remain unchanged.

Most known feasible optimization methods guarantee evaluation of objective function
values at feasible arguments and try to remain as close to the feasible domain as possible,
but constraint functions may be computed at infeasible iterates, e.g., to check whether
they are violated or not. Our own approach differs from all other feasible or feasible
direction methods found in the literature, since we distinguish explicitly between feasibility
constraints, which may be violated and which must be satisfied before requesting an
evaluation of objective function and all other constraints, also before calling corresponding
partial derivatives. In addition, many existing implementations are based on sequential
quadratic programming (SQP) methods and not suitable for solving large optimization
problems.

Our main design goal is to develop an algorithm for solving practical optimization
problems in mechanical engineering. The new method is based on the method of moving
asymptotes introduced by Svanberg [48] and the sequential convex programming (SCP)
algorithm of Zillober [56]. Both algorithms a widely used in industry and academia to solve
mechanical structural optimization problems, especially in topology optimization. The
feasible sequential convex programming method (FSCP) is introduced in Section 2. The
SCP algorithm of Zillober [56] is extended and adapted such that feasibility with respect
to a subset of constraints is guaranteed in each iteration. A global convergence proof based
on the usage of an augmented Lagrangian merit function also used by Schittkowski [43]
in the frame of an SQP algorithm, is given in Section 3. The FMO model is outlined in
Section 4, where elasticity tensors must be positive definite in order to evaluate a valid
global stiffness matrix. Two formulations to replace semidefinite constraints by nonlinear
ones are proposed and some numerical results are presented.
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2 A Feasible Sequential Convex Programming Method

There exist optimization applications where the model functions are only defined on a
certain domain specified by other constraints. Since standard nonlinear optimization
methods cannot ensure feasibility during the solution process, these problems cannot be
solved appropriately. Typical examples are logarithmic or square root functions, e.g.,

c1 (x) := log (e1 (x)) ,

c2 (x) :=
√

e2 (x),

where e1 (x) and e2 (x) are any nonlinear functions. To evaluate c1 (x) and c2 (x), the
constraints e1 (x) > 0 and e2 (x) > 0 must be satisfied.

We present an extended version of the SCP-algorithm of Zillober [55, 57] guarantee-
ing feasibility of a given subset of constraints in each iteration, i.e., of ej (x) ≤ 0, j =
1, . . . , mf , which called the feasibility constraints. The resulting method is denoted as fea-
sible sequential convex programming method (FSCP). It is assumed that the constraints
cj (x), j = 1, . . ., mc, as well as the objective function f (x) can only be evaluated at an
x ∈ Rn with ej (x) ≤ 0, j = 1, . . ., mf , i.e., at a parameter vector satisfying the feasibility
constraints, see (1). Objective function f (x) and constraints cj (x), j = 1, . . ., mc, are
supposed to be continuously differentiable on the feasible set

F := {x ∈ R
n | ej (x) ≤ 0, j = 1, . . . , mf } . (5)

The feasibility functions ej (x), j = 1, . . ., mf , are supposed to be convex and at least
twice continuously differentiable on Rn. Thus, F is convex which is important to guarantee
feasibility, if the stepsize is reduced during a line search procedure.

Proceeding from a feasible starting point with respect to feasibility constraints, i.e.,
x(0) ∈ F , we generate a sequence of convex subproblems, which are easy to solve due to
their special structure even if the number of variables and constraints becomes very large.
Moreover, the nonlinear constraints ej (x), j = 1, . . ., mf , are added to ensure feasibility

of all iterates. Proceeding from index sets I
(k)
+ and I

(k)
− defined by

I
(k)
+ :=

{
i = 1, . . . , n

∣∣∣∣∣ ∂f
(
x(k)

)
∂xi

≥ 0

}
(6)

and

I
(k)
− :=

{
i = 1, . . . , n

∣∣∣∣∣ ∂f
(
x(k)

)
∂xi

< 0

}
, (7)

we approximate objective function f (x) and constraints cj (x), j = 1, . . ., mc, by convex

7



and separable functions

f (k) (x) := f
(
x(k)

)
+

∑
I
(k)
+

∂f
(
x(k)

)
∂xi

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)

−
∑
I
(k)
−

∂f
(
x(k)

)
∂xi

(
x
(k)
i − L

(k)
i

)2
(

1

xi − L
(k)
i

− 1

x
(k)
i − L

(k)
i

)
(8)

+
∑
I
(k)
+

τ

(
xi − x

(k)
i

)2

U
(k)
i − xi

+
∑
I
(k)
−

τ

(
xi − x

(k)
i

)2

xi − L
(k)
i

with L
(k)
i < xi < U

(k)
i and τ > 0, see Svanberg [48] and Zillober [59]. In each iteration

k, objective function and the inequality constraints are linearized with respect to the
inverse variables 1/(U

(k)
i −xi) or 1/(xi−L

(k)
i ) depending on the sign of the corresponding

partial derivative. To ensure strict convexity of f (k) (x) and to get an unique solution of the
subproblem, the additional regularization parameter τ > 0 is introduced, see Zillober [59].

The nonlinear inequality constraints cj (x) , j = 1, . . . , mc, are approximated then by

c
(k)
j (x) := cj

(
x(k)

)
+

∑
I
(j,k)
+

∂cj
(
x(k)

)
∂xi

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)
(9)

−
∑
I
(j,k)
−

∂cj
(
x(k)

)
∂xi

(
x
(k)
i − L

(k)
i

)2
(

1

xi − L
(k)
i

− 1

x
(k)
i − L

(k)
i

)

with L
(k)
i < xi < U

(k)
i and

I
(j,k)
+ :=

{
i = 1, . . . , n

∣∣∣∣∣ ∂cj
(
x(k)

)
∂xi

≥ 0

}
, (10)

I
(j,k)
− :=

{
i = 1, . . . , n

∣∣∣∣∣ ∂cj
(
x(k)

)
∂xi

< 0

}
. (11)

Note that f (k) (x) and c
(k)
j (x) are first-order approximations of f(x) and gj ∗ x), re-

spectively. We implicitly assume that the nonlinear functions e1 (x), . . ., emf
(x) and their

derivatives are much easier to evaluate than the functions and gradients of f(x) and c1 (x),
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. . ., cmc (x). At each iteration k, we have to solve the subproblem

min
x

f (k) (x) x ∈ Rn

s.t. c
(k)
j (x) ≤ 0, j = me + 1, . . . , mc

ej (x) ≤ 0, j = 1, . . . , mf

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

(12)

The box constraints are defined by

x
(k)
i := x

(k)
i − ω

(
x
(k)
i − L

(k)
i

)
, i = 1, . . . , n (13)

and

x
(k)
i := x

(k)
i + ω

(
U

(k)
i − x

(k)
i

)
, i = 1, . . . , n (14)

where ω ∈]0, 1[ is a given constant. The asymptotes L
(k)
i and U

(k)
i , i = 1, . . ., n must be

updated carefully to remain feasible, see also Zillober [56].

Definition 2.1. A sequence of asymptotes
{
L(k)

}
,
{
U (k)

}
is called feasible subject to a

bounded sequence
{
x(k)

}
with L

(k)
i < x

(k)
i < U

(k)
i , i = 1, . . . , n, if there exists a ξ > 0 and

Lmin, Umax ∈ R, Lmin < Umax such that

1. L
(k)
i ≤ x

(k)
i − ξ, U

(k)
i ≥ x

(k)
i + ξ, for all i = 1, ..., n, and k ≥ 0.

2. L
(k)
i ≥ Lmin, U

(k)
i ≤ Umax, ∀ k ≥ 0, i = 1, . . . , n.

The first part of this definition prevents that the slope of the approximations from
becoming too steep. Under no circumstances, the iterates x(k) are allowed to approach
the asymptotes too close. Moreover, x(k) remains in the set F

(k)
X ⊂ F , where

F
(k)
X := F ∩X(k) (15)

X(k) :=
{
x ∈ R

n
∣∣ x(k) ≤ x ≤ x(k)

}
. (16)

To assure global convergence of the algorithm, we apply a line search procedure subject
to a differentiable augmented Lagrangian merit function, which is also used in Schitt-
kowski [43] to prove convergence of an SQP algorithm,

Φρ

(
x
y

)
:= f (x) +

mc∑
j=me+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(yc)j cj (x) +

(ρc)j
2

c2j (x) , if − (yc)j
(ρc)j

≤ cj (x)

− (yc)
2
j

2 (ρc)j
, otherwise

+

mf∑
j=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ye)j ej (x) +

(ρe)j
2

e2j (x) , if − (ye)j
(ρe)j

≤ ej (x)

− (ye)
2
j

2 (ρe)j
, otherwise

(17)
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for a given set of penalty parameters

ρ :=

(
ρc
ρe

)
(18)

with (ρc)j > 0, j = 1, . . . , mc, and (ρe)j > 0, j = 1, . . . , mf . We denote the Lagrangian
multipliers of the constraints cj (x), j = 1, . . ., mc, and of the feasibility constraints ej (x),
j = 1, . . ., mf , by

y :=

(
yc
ye

)
(19)

with yc =
(
(yc)1 , . . . , (yc)mc

)T ∈ Rmc , and ye =
(
(ye)1 , . . . , (ye)mf

)T

∈ Rmf .

The sufficient descent property of the merit function depends on parameters η
(k)
i , i =

1, . . . , n, by which the curvature of the approximated objective function f (k) (x) is esti-
mated,

η
(k)
i :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
∂f

(
x(k)

)
∂xi

+ τ

)
2U

(k)
i − z

(k)
i − x

(k)
i(

U
(k)
i − z

(k)
i

)2 , if i ∈ I
(k)
+

−
(
∂f

(
x(k)

)
∂xi

− τ

)
−2L

(k)
i + z

(k)
i + x

(k)
i(

z
(k)
i − L

(k)
i

)2 , otherwise

(20)

and we define

η(k) := min
i=1,...,n

η
(k)
i . (21)

The penalty parameters are updated in the following manner.

Algorithm 1. Update of penalty parameters
Let k be the iteration index and x(k) ∈ Rn the current primal and y(k) ∈ Rmc the current
dual variable. Moreover, let

(
z(k), v(k)

)
be the solution of subproblem (12) defined in x(k)

and ρ
(k−1)
j the previous penalty parameter.

If j ∈ J
(k)
c , cj(x

(k)) < 0, and v
(k)
j < y

(k)
j then

ρ
(k)
j := max

(
ρ
(k−1)
j ,−2(y

(k)
j − v

(k)
j )

cj(x(k))

)
(22)

else

ρ
(k)
j := max

⎛⎝ρ
(k−1)
j ,

10(mc +mf )
∣∣∣y(k)j

(
v
(k)
j − y

(k)
j

)∣∣∣
η(k) ‖z(k) − x(k)‖2

⎞⎠ (23)
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Starting from ρ
(0)
j > 0 for j = 1, . . ., mc + mf , the series of penalty parameters is

non-decreasing. They are chosen to guarantee that the property

∇Φρ(k)

(
x(k)

y(k)

)T

d(k) ≤ −η(k)
∥∥z(k) − x(k)

∥∥2

2
(24)

subject to the augmented Lagrangian merit function (17). Note that the choice of ρ
(k)
j

is a bit overestimated. The implementation must be carefully adapted to prevent a too
large increase of the penalty parameters especially in the beginning of the algorithm, see
Zillober [57], and to allow also a decrease temporarily.

If we denote the primal solution of subproblem (12) by z(k) and the dual solution by
v(k), we start an iterative subprocess at σ(k,0) := 1 and reduce it until

Φρ(k)

((
x(k)

y(k)

)
+ σ(k,i)d(k)

)
≤ Φρ(k)

(
x(k)

y(k)

)
+ μσ(k,i)∇Φρ(k)

(
x(k)

y(k)

)T

d(k), (25)

where μ ∈ (0, 1) is constant and where the search direction d(k) ∈ Rn+mc is given by

d(k) :=

(
z(k) − x(k)

v(k) − y(k)

)
. (26)

for the fist time, i = 0, 1, 2, . . ., see Armijo [2] or Ortega and Rheinboldt [37].

Now we are able to summarize the feasible SCP algorithm.

Algorithm 2. Feasible Sequential Convex Programming

Step 0: Choose feasible starting point x(0) ∈ F . Set parameters ξ > 0, Lmin < Umax,
ρ
(0)
j > 0 for j = 1, . . . , mc +mf , ω ∈]0; 1[, μ ∈ (0, 1), β ∈ (0, 1), τ > 0, and

y(0) ≥ 0. Compute f
(
x(0)

)
,∇f

(
x(0)

)
, cj

(
x(0)

)
,∇cj

(
x(0)

)
, j = 1, . . . , mc,

and ej
(
x(0)

)
,∇ej

(
x(0)

)
, j = 1, . . . , mf . Set penalty parameters

(
ρ
(−1)
c

)
j
> 0,

j = 1, . . . , mc, and
(
ρ
(−1)
e

)
j
> 0, j = 1, . . . , mf . Set k := 0.

Step 1: Determine feasible asymptotes L
(k)
i and U

(k)
i , i = 1, . . . , n. Let f (k) (x), c

(k)
j (x),

j = 1, . . . , mc, be defined by (8) and (9). Define x
(k)
i and x

(k)
i ,

i = 1, . . . , n, by (13) and (14). Formulate (12) for the
corresponding iteration k.

Step 2: Solve (12). Let z(k) be the optimal solution of subproblem (12) and
v(k) the vector of corresponding Lagrangian multipliers.

Step 3: If z(k) = x(k), then STOP.
(
x(k), v(k)

)
is a KKT point of (12).

Step 4: Let d(k) :=

(
z(k) − x(k)

v(k) − y(k)

)
, and η(k) as defined in (21).

11



Let i = 0 and ρ(k,0) := ρ(k−1).

Step 5: Compute f
(
x(k) + σ(k,i)

(
z(k) − x(k)

))
, cj

(
x(k) + σ(k,i)

(
z(k) − x(k)

))
,

j = 1, . . . , mc, andej
(
x(k) + σ(k,i)

(
z(k) − x(k)

))
, j = 1, . . . , mf ,.

If (25) is not satisfied, let σ(k,i+1) := βσ(k,i), i = i+ 1 and repeat (Armijo).
Otherwise, σ(k) := σ(k,i).

Step 6: Let

(
x(k+1)

y(k+1)

)
:=

(
x(k)

y(k)

)
+ σ(k)d(k), k := k + 1.

Step 7: Compute ∇f
(
x(k)

)
, ∇cj

(
x(k)

)
, j = 1, . . ., mc, ∇ej

(
x(k)

)
, j = 1, . . ., mf

and goto Step 1.

It might happen that the constraints of subproblem (12) become inconsistent. In this
case, the subproblem is extended by additional variables, see Zillober [58] for details. Also
a procedure for computing feasible asymptotes is listed there. The line search procedure
is a simple bisection method until sufficient descent is reached. It is easily extended by
a more efficient one taking curvature information into account, e.g., by trying first the
minimizer of a quadratic interpolation along the search direction, see Schittkowski ??.
The subset F described by the feasibility constraints is convex, an important assumption
for the line search procedure. It is guaranteed that the feasibility constraints are satisfied
whenever objective or constraint function values function are to be evaluated.

3 A Global Convergence Theorem

We proceed from the nonlinear program (1) with feasibility constraints and summarize a
few technical preliminaries, which are outlined and proved in detail in Lehmann [32].

First, the box constraints of subproblem (12) are written in the form

b
(k)
i (x) := xi − x

(k)
i ≤ 0, i = 1, . . . , n, (27)

b
(k)
n+i (x) := x

(k)
i − xi ≤ 0, i = 1, . . . , n. (28)

and the corresponding Lagrangian multipliers are v
(k)
u ∈ Rn for the upper bounds b

(k)
i (x), i =

1, . . . , n, and v
(k)
l ∈ Rn for the lower bounds b

(k)
i+n(x), i = 1, . . . , n. Moreover, we define

the Jacobian matrices by

Au(k) (x) :=
(
∇b

(k)
1 (x), . . . ,∇b(k)n (x)

)
∈ R

n×n, (29)

Al(k) (x) :=
(
∇b

(k)
n+1(x), . . . ,∇b

(k)
2n (x)

)
∈ R

n×n. (30)

It is easy to see, that

Au(k) (x) = −Al(k) (x) = I, (31)

12



where I ∈ Rn×n is the identity matrix. We denote the primal solution of subproblem (12)
in iteration k by z(k) ∈ Rn, the dual solution by v(k) ∈ Rmc+mf and define

Δx(k) := z(k) − x(k). (32)

Moreover, we define index sets

Jc(x) :=

{
j = 1, . . . , mc

∣∣∣∣∣−(yc)j
(ρc)j

≤ cj(x)

}
(33)

J c(x) :=

{
j = 1, . . . , mc

∣∣∣∣∣−(yc)j
(ρc)j

> cj(x)

}
(34)

Je(x) :=

{
j = 1, . . . , mf

∣∣∣∣∣−(ye)j
(ρe)j

≤ ej(x)

}
(35)

Je(x) :=

{
j = 1, . . . , mf

∣∣∣∣∣−(ye)j
(ρe)j

> ej(x)

}
(36)

Jacobian matrices are denoted by

Ac(x) := (∇c1(x), . . . ,∇cmc(x)) ∈ R
n×mc (37)

Ae(x) :=
(∇e1(x), . . . ,∇emf

(x)
) ∈ R

n×mf (38)

A(x) := (Ac(x), Ae(x)) ∈ R
n×mc+mf (39)

We then define

yc :=
(
(yc)1 , . . . , (yc)mc

)T
with (yc)j :=

{
(yc)j , if j ∈ Jc(x)

0, otherwise
(40)

ye :=
(
(ye)1 , . . . , (ye)mf

)T

with (ye)j :=

{
(ye)j , if j ∈ Je(x)

0, otherwise
(41)

vc :=
(
(vc)1 , . . . , (vc)mc

)T
with (vc)j :=

{
(vc)j , if j ∈ Jc(x)

0, otherwise
(42)

ve :=
(
(ve)1 , . . . , (ve)mf

)T

with (ve)j :=

{
(ve)j , if j ∈ Je(x)

0, otherwise
(43)

c(x) := (c1(x), . . . , cmc(x))
T with cj(x) :=

{
cj(x), if j ∈ Jc(x)
0, otherwise

(44)

e(x) :=
(
e1(x), . . . , emf

(x)
)T

with ej(x) :=

{
ej(x), if j ∈ Je(x)
0, otherwise

(45)

ĉ(x) := (ĉ1(x), . . . , ĉmc(x))
T with ĉj(x) :=

{
cj(x), if j ∈ Jc(x)

− (yc)j
(ρc)j

, otherwise
(46)

ê(x) :=
(
ê1(x), . . . , êmf

(x)
)T

with êj(x) :=

{
ej(x), if j ∈ Je(x)

− (ye)j
(ρe)j

, otherwise
(47)
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c̃(x) := (c̃1(x), . . . , c̃mc(x))
T with c̃j(x) :=

{
cj(x), if j ∈ Jc(x)

− (yc)j
2(ρc)j

, otherwise
(48)

ẽ(x) :=
(
ẽ1(x), . . . , ẽmf

(x)
)T

with ẽj(x) :=

{
ej(x), if j ∈ Je(x)

− (ye)j
2(ρe)j

, otherwise
(49)

Whenever necessary, we add the upper index (k) to denote the k-th iteration step and let

J (k)
c := Jc(x

(k)) (50)

J
(k)

c := Jc(x
(k)) (51)

J (k)
e := Je(x

(k)) (52)

J
(k)

e := Je(x
(k)) (53)

The Lagrangian function of the nonlinear program (1) with feasibility constraints and
the corresponding gradient subject to the primal variable x is

L (x, y) = f(x) + yTc c(x) + yTe e(x) (54)

∇xL (x, y) = ∇f(x) + Ac(x)yc + Ae(x)ye (55)

and the augmented Lagrangian (17) is now written in the form

Φρ

(
x
y

)
= f(x) + yTc c̃(x) +

1

2
ρTc c

2(x) + yTe ẽ(x) +
1

2
ρTe e

2(x) (56)

with gradient

∇Φρ

(
x
y

)
=

⎛⎜⎝ ∇f(x) + Ac(x) (yc + Γcc(x)) + Ae(x) (ye + Γee(x))

ĉ(x)

ê(x)

⎞⎟⎠ (57)

Note that we are looking for a descent of the merit function subject to the primal and
the dual variables.

We denote the Lagrangian function of subproblem (12) in iteration k by L(k)(z, v).
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For the primal and dual solution
(
z(k), v(k)

)
we obtain the KKT conditions

∇xL
(k)

(
z(k), v(k)

)
= ∇f (k)

(
z(k)

)
+ Ac(k)

(
z(k)

)
v(k)c

+Ae

(
z(k)

)
v(k)e + v(k)u − v

(k)
l = 0 (58)(

v(k)c

)
j
c
(k)
j

(
z(k)

)
= 0, j = 1, . . . , mc (59)(

v(k)e

)
j
ej

(
z(k)

)
= 0, j = 1, . . . , mf (60)(

v
(k)
b

)
j
b
(k)
j

(
z(k)

)
= 0, j = 1, . . . , 2n (61)

c
(k)
j

(
z(k)

) ≤ 0, j = 1, . . . , mc (62)

ej
(
z(k)

) ≤ 0, j = 1, . . . , mf (63)

b
(k)
j

(
z(k)

) ≤ 0, j = 1, . . . , 2n (64)(
v(k)c

)
j

≥ 0, j = 1, . . . , mc (65)(
v(k)e

)
j

≥ 0, j = 1, . . . , mf (66)(
v
(k)
b

)
j

≥ 0, j = 1, . . . , 2n (67)

Applying now a Taylor approximation with residual terms Rf(k)(x), R
c
(k)
j
(x) and Rej(x),

we obtain

f (k)(x) = f
(
x(k)

)
+∇f (k)

(
x(k)

)T︸ ︷︷ ︸
=∇f(x(k))

T

(
x− x(k)

)
+Rf(k)(x) (68)

∇f (k)(x) = ∇f
(
x(k)

)
+∇Rf(k)(x) (69)

and

c
(k)
j (x) = cj

(
x(k)

)
+∇c

(k)
j

(
x(k)

)T︸ ︷︷ ︸
=∇cj(x(k))

T

(
x− x(k)

)
+R

c
(k)
j
(x) (70)

∇c
(k)
j (x) = ∇cj

(
x(k)

)
+∇R

c
(k)
j
(x) (71)

ej(x) = ej
(
x(k)

)
+∇ej

(
x(k)

)T (
x− x(k)

)
+Rej (x) (72)

∇ej(x) = ∇ej
(
x(k)

)
+∇Rej (x) (73)

for j = 1, . . . , mc and j = 1, . . . , mf . Moreover, the gradients of cj(x), j = 1, . . . , mc, and
ej(x), j = 1, . . . , mf , at z

(k) are

∇cj
(
x(k)

)T
Δx(k) = c

(k)
j

(
z(k)

)− cj
(
x(k)

)− R
c
(k)
j

(
z(k)

)
(74)

∇ej
(
x(k)

)T
Δx(k) = ej

(
z(k)

)− ej
(
x(k)

)−Rej

(
z(k)

)
. (75)
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Since all approximating functions are convex, the corresponding residuals are nonnegative.
The same holds for the residuals of the feasibility constraints, i.e.,

ej
(
x(k)

)− ej
(
z(k)

) ≥ −∇ej
(
z(k)

)T
Δx(k) (76)

We denote

Rc(k) (x) :=
(
R

c
(k)
1

(x) , . . . , R
c
(k)
mc

(x)
)T

∈ R
mc (77)

∇Rc(k) (x) :=
(
∇R

c
(k)
1

(x) , . . . ,∇R
c
(k)
mc

(x)
)
∈ R

n×mc (78)

and

Re (x) :=
(
Re1 (x) , . . . , Remf

(x)
)T

∈ R
mf (79)

∇Re (x) :=
(
∇Re1 (x) , . . . ,∇Remf

(x)
)
∈ R

n×mf (80)

respectively.

All iterates satisfy the bound conditions and we get an important relation between
the Lagrangian multipliers of the box constraints v

(k)
u and v

(k)
l and the search direction

Δx(k), see Lehmann [32], (
v(k)u

)T
Δx(k) ≥ 0 (81)(

v
(k)
l

)T

Δx(k) ≤ 0 (82)

Moreover, we obtain an upper bound on the descent of the objective function in iteration
x(k),

∇f
(
x(k)

)T
Δx(k) ≤ −∇Rf(k)

(
z(k)

)T
Δx(k) −

(
v
(k)
c

)T

Ac(x
(k))TΔx(k)

−
(
v
(k)
c

)T

∇Rc(k)(z
(k))TΔx(k)

+
(
v
(k)
e

)T (
e
(
x(k)

)− e
(
z(k)

))
(83)

and, in addition, (
v(k)c

)T
Rc(k)(z

(k))− (
v(k)c

)T ∇Rc(k)(z
(k))TΔx(k) ≤ 0 (84)

From the feasibility of the moving asymptotes and the definition of η
(k)
i , i = 1, . . . , n, we

easily get a positive lower bound

min
i=1,...,n

η
(k)
i =: η(k) > η > 0 (85)
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where

η := τ
(2− ω) ξ

(Umax − Lmin)
2 . (86)

An important part of the convergence proof is to show that the penalty parameters and
the augmented Lagrangian function are uniformly bounded on X(k). First, we note that
the gradients of f (k)(x) and c

(k)
j (x), j = 1, . . . , mc, are uniformly bounded, i.e., if F is

nonempty and compact, then there exists M0 > 0 and Mj > 0, j = 1, . . . , mc such that∣∣∣∣∂f (k)(x)

∂xi

∣∣∣∣ < M0, i = 1, . . . , n (87)∣∣∣∣∣∂c
(k)
j (x)

∂xi

∣∣∣∣∣ ≤ Mj , i = 1, . . . , n, j = 1, . . . , mc (88)

holds for all x ∈ X(k) and k = 0, 1, 2, . . .. The proof, see Lehmann [32] for details,
depends heavily on the feasibility of the asymptotes and the way the bounds of (12)
are constructed. F may be assumed to be bounded without loss of generality, since we
omitted upper and lower bounds in (1) only to simplify the notation, i.e., we may assume
the the feasible domain of (1) is always bounded.

On the other hand, the boundedness of the multipliers y(k)) or v(k)), respectively,
is by no means trivial and cannot be achieved without additional assumptions on the
underlying structure of the given nonlinear program (1). One possibility is to require
the linear independency constraint qualification (LICQ) for all iterates and all possible
accumulation points. Since, however, the LICQ cannot be checked in advance, we assume
for simplicity that all multipliers are bounded.

To prove a global convergence theorem, we will construct a contradiction to the bound-
edness of the augmented Lagrangian function (17) from below, see Zillober [55]. His proof
is to be extended by adding feasibility constraints. Thus, the subsequent Lemma is es-
sential for proving convergence.

Lemma 3.1. Let F defined by (2) be nonempty and compact. Then there exists a MΦ ∈ R

such that

Φρ

(
x
y

)
≥ MΦ (89)

holds for all x ∈ F , y ∈ Y , Y compact, (ρc)j ≥ 1, j = 1, . . . , mc and (ρe)j ≥ 1,
j = 1, . . . , mf .
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Proof. Considering the augmented Lagrangian merit function (56), we obtain

Φρ

(
x
y

)
= f(x) + yTc c̃(x) +

1

2
ρTc c

2(x) + yTe ẽ(x) +
1

2
ρTe e

2(x)

= f(x) +

mc∑
j=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(yc)j cj(x) +

(ρc)j
2

c2j (x)︸ ︷︷ ︸
≥0

, if j ∈ Jc(x)

− (yc)
2
j

2 (ρc)j
, if j ∈ Jc(x)

+

mf∑
j=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(ye)j ej(x) +

(ρe)j
2

e2j(x)︸ ︷︷ ︸
≥0

, if j ∈ Je(x)

− (ye)
2
j

2 (ρe)j
, if j ∈ Je(x)

≥ f(x) +
mc∑
j=1

⎧⎪⎨⎪⎩
(yc)j cj(x), if j ∈ Jc(x)

− (yc)
2
j

2 (ρc)j
, if j ∈ Jc(x)

+

mf∑
j=1

⎧⎪⎨⎪⎩
(ye)j ej(x), if j ∈ Je(x)

− (ye)
2
j

2 (ρe)j
, if j ∈ Je(x)

As F is nonempty and compact, there exists min
x∈F

cj(x) ≤ 0, j = 1, . . . , mc, min
x∈F

f(x),

and min
x∈F

ej(x) ≤ 0, j = 1, . . . , mf , respectively. Moreover, there exists by assumption a

ymax ∈ R such that |yi| ≤ ymax, i = 1, . . . , mc +mf . Thus,

Φρ

(
x
y

)
≥ min

x∈F
f(x) +

mc∑
j=1

{
ymaxmin

x∈F
cj(x), if j ∈ Jc(x)

−y2max, if j ∈ Jc(x)

+

mf∑
j=1

{
ymaxmin

x∈F
ej(x), if j ∈ Je(x)

−y2max, if j ∈ Je(x)

≥ min
x∈F

f(x) + mc ymax min
j=1,...,mc

{
min
x∈F

cj(x),−ymax

}
+ mf ymax min

j=1,...,mf

{
min
x∈F

ej(x),−ymax

}
=: MΦ
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Summarizing all previous investigations, we are able now to prove the sufficient descent
property of the augmented Lagrangian merit function (17) subject to search direction

d(k) :=

⎛⎝ Δx(k)

Δy
(k)
c

Δy
(k)
e

⎞⎠ (90)

with

Δx(k) := z(k) − x(k) (91)

Δy(k)c := v(k)c − y(k)c (92)

Δy(k)e := v(k)e − y(k)e (93)

Note that we consider descent of Φρ

(
x
y

)
subject to the primal and dual variables, see

also Schittkowski [43], Zillober [55, 57], and Lemann [32].

Theorem 3.1. Let the sequences
{
x(k), y(k)

}
and

{
z(k), v(k)

}
be computed by Algorithm 2,

where the corresponding approximations f (k)(x) and c
(k)
j (x) are defined by (8) and (9). Let

the asymptotes L
(k)
i and U

(k)
i , i = 1, . . . , n, be feasible according to Definition 2.1, and let

F defined by (2) be nonempty and compact. Consider d(k) ∈ Rn+mc+mf defined by (90)
and η(k) defined by (20). If z(k) �= x(k) and if the penalty parameters ρ(k) are computed by
(1), then d(k) is a descent direction for the augmented Lagrangian function, i.e.,

∇Φρ(k)

(
x(k)

y(k)

)T

d(k) ≤ −η(k)‖z(k) − x(k)‖22
2

. (94)

Proof.

∇Φρ

(
x(k)

y(k)

)T

d(k)

(57)
= ∇f

(
x(k)

)T
Δx(k) +

(
y(k)c + Γcc

(
x(k)

))T
Ac

(
x(k)

)T
Δx(k)︸ ︷︷ ︸

=c(k)(z(k))−c(x(k))−R
c(k)(z

(k)), (74)

+ĉ
(
x(k)

)T
Δy(k)c +

(
y(k)e + Γee

(
x(k)

))T
Ae

(
x(k)

)T
Δx(k)︸ ︷︷ ︸

=e(z(k))−e(x(k))−Re(z(k)), (75)

+ê
(
x(k)

)T
Δy(k)e
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∇Φρ

(
x(k)

y(k)

)T

d(k)

(83)

≤ −∇Rf(k)

(
z(k)

)T
Δx(k)

− (
v(k)c

)T
Ac(x

(k))TΔx(k)︸ ︷︷ ︸
=c(k)(z(k))−c(x(k))−R

c(k)(z
(k)), (74)

− (
v(k)c

)T ∇Rc(k)(z
(k))TΔx(k)

+
(
v(k)e

)T (
e
(
x(k)

)− e
(
z(k)

))
+

(
y(k)c + Γcc

(
x(k)

))T︸ ︷︷ ︸
≥0, Definition (33)

(
c(k)

(
z(k)

)− c
(
x(k)

)− Rc(k)
(
z(k)

))
+ĉ

(
x(k)

)T
Δy(k)c

+
(
y(k)e + Γee

(
x(k)

))T︸ ︷︷ ︸
≥0, Definition (35)

(
e
(
z(k)

)− e
(
x(k)

)− Re

(
z(k)

))
+ê

(
x(k)

)T
Δy(k)e

= −∇Rf(k)

(
z(k)

)T
Δx(k)

− (
v(k)c

)T (
c(k)

(
z(k)

)− c
(
x(k)

)−Rc(k)
(
z(k)

))
− (

v(k)c

)T ∇Rc(k)
(
z(k)

)T
Δx(k) +

(
v(k)e

)T (
e
(
x(k)

)− e
(
z(k)

))
+

(
y(k)c + Γcc

(
x(k)

))T
c(k)

(
z(k)

)︸ ︷︷ ︸
≤0

− (
y(k)c + Γcc

(
x(k)

))T
c
(
x(k)

)
− (

y(k)c + Γcc
(
x(k)

))T
Rc(k)

(
z(k)

)︸ ︷︷ ︸
≥0

+ĉ
(
x(k)

)T
Δy(k)c

+
(
y(k)e + Γee

(
x(k)

))T
e
(
z(k)

)︸ ︷︷ ︸
≤0

− (
y(k)e + Γee

(
x(k)

))T
e
(
x(k)

)
− (

y(k)e + Γee
(
x(k)

))T
Re

(
z(k)

)︸ ︷︷ ︸
≥0

+ê
(
x(k)

)T
Δy(k)e

≤ −∇Rf(k)

(
z(k)

)T
Δx(k) − (

v(k)c

)T
c(k)

(
z(k)

)︸ ︷︷ ︸
=0, (59)

+
(
v(k)c

)T
c
(
x(k)

)
+

(
v(k)c

)T
Rc(k)

(
z(k)

)− (
v(k)c

)T ∇Rc(k)

(
z(k)

)T
Δx(k)︸ ︷︷ ︸

≤0, (84)

+
(
v(k)e

)T
e
(
x(k)

)− (
v(k)e

)T
e
(
z(k)

)︸ ︷︷ ︸
=0, (60)

− (
y(k)c + Γcc

(
x(k)

))T
c
(
x(k)

)
+ ĉ

(
x(k)

)T
Δy(k)c

− (
y(k)e + Γee

(
x(k)

))T
e
(
x(k)

)
+ ê

(
x(k)

)T
Δy(k)e

20



Using the Definitions (40)-(49) and Δy
(k)
c := v

(k)
c − y

(k)
c we get

∇Φρ

(
x(k)

y(k)

)T

d(k)

≤ −∇Rf(k)

(
z(k)

)T
Δx(k) +

∑
j∈J(k)

c

(
v(k)c

)
j
cj

(
x(k)

)
+

∑
j∈J(k)

c

(
v(k)c

)
j
cj

(
x(k)

)︸ ︷︷ ︸
≤0

+
∑
j∈J(k)

e

(
v(k)e

)
j
ej

(
x(k)

)
+

∑
j∈J(k)

e

(
v(k)e

)
j
ej

(
x(k)

)
︸ ︷︷ ︸

≤0

−
∑

j∈J(k)
c

(
y(k)c

)
j
cj

(
x(k)

)

−
∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)

)
+

∑
j∈J(k)

c

cj
(
x(k)

) (
Δy(k)c

)
j
−

∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

(
Δy(k)c

)
j

−
∑
j∈J(k)

e

(
y(k)e

)
j
ej

(
x(k)

)− ∑
j∈J(k)

e

(ρe)j e
2
j

(
x(k)

)

+
∑
j∈J(k)

e

ej
(
x(k)

) (
Δy(k)e

)
j
−

∑
j∈J(k)

e

(
y
(k)
e

)
j

(ρe)j

(
Δy(k)e

)
j

≤ −∇Rf(k)

(
z(k)

)T
Δx(k) +

∑
j∈J(k)

c

(
v(k)c

)
j
cj

(
x(k)

)− ∑
j∈J(k)

c

(
y(k)c

)
j
cj

(
x(k)

)
︸ ︷︷ ︸

=
∑

j∈J
(k)
c

cj(x(k))
(
Δy

(k)
c

)
j

−
∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)

)
+

∑
j∈J(k)

c

cj
(
x(k)

) (
Δy(k)c

)
j

(95)

−
∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

(
Δy(k)c

)
j
+

∑
j∈J(k)

e

(
v(k)e

)
j
ej

(
x(k)

)
︸ ︷︷ ︸

≤0

−
∑
j∈J(k)

e

(
y(k)e

)
j
ej

(
x(k)

)

−
∑
j∈J(k)

e

(ρe)j e
2
j

(
x(k)

)︸ ︷︷ ︸
≥0

+
∑
j∈J(k)

e

ej
(
x(k)

) (
Δy(k)e

)
j
−

∑
j∈J(k)

e

(
y
(k)
e

)
j

(ρe)j

(
Δy(k)e

)
j
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All together this leads to

∇Φρ

(
x(k)

y(k)

)T

d(k) ≤ −∇Rf(k)

(
z(k)

)T
Δx(k)︸ ︷︷ ︸

(a)

+
∑
j∈J(k)

c

2cj
(
x(k)

) (
Δy(k)c

)
j
−

∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)

)
︸ ︷︷ ︸

(b)

−
∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

(
Δy(k)c

)
j︸ ︷︷ ︸

(c)

−
∑
j∈J(k)

e

(
y(k)e

)
j
ej

(
x(k)

)
︸ ︷︷ ︸

(d)

+
∑
j∈J(k)

e

ej
(
x(k)

) (
Δy(k)e

)
j︸ ︷︷ ︸

(e)

−
∑
j∈J(k)

e

(
y
(k)
e

)
j

(ρe)j

(
Δy(k)e

)
j︸ ︷︷ ︸

(f)

(96)

We now have to show that (96) is less than −η(k)‖z(k)−x(k)‖2

2
. Therefore, we consider

each part individually.

Considering (a):
Using the derivative of the residual term of f (k), we get:

∇Rf(k)

(
z(k)

)T
Δx(k)

=
∑
I
(k)
+

[
∂f

(
x(k)

)
∂xi

+ τ

]⎡⎢⎣
(
z
(k)
i − x

(k)
i

)2 (
2U

(k)
i − z

(k)
i − x

(k)
i

)
(
U

(k)
i − z

(k)
i

)2

⎤⎥⎦ (97)

−
∑
I
(k)
−

[
∂f

(
x(k)

)
∂xi

− τ

]⎡⎢⎣
(
z
(k)
i − x

(k)
i

)2 (
−2L

(k)
i + z

(k)
i + x

(k)
i

)
(
z
(k)
i − L

(k)
i

)2

⎤⎥⎦
(20)
=

∑
I
(k)
+

η
(k)
i

(
z
(k)
i − x

(k)
i

)2

+
∑
I
(k)
−

η
(k)
i

(
z
(k)
i − x

(k)
i

)2

Together with Definition η(k) := min
i=1,...,n

η
(k)
i given in (21) we get

−∇Rf(k)

(
z(k)

)T
Δx(k) ≤ −η(k)

∥∥Δx(k)
∥∥2

2
= −η(k)

∥∥z(k) − x(k)
∥∥2

< 0 (98)
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Considering (b):

As 0 ≤
(
v
(k)
c

)
j
≤ ymax and 0 ≤

(
y
(k)
c

)
j
≤ ymax,∣∣∣Δ (

y(k)c

)
j

∣∣∣ = ∣∣∣(v(k)c

)
j
− (

y(k)c

)
j

∣∣∣ ≤ ymax (99)

holds. This leads to∑
j∈J(k)

c

[
2cj

(
x(k)

) (
Δy(k)c

)
j
− (ρc)j c

2
j

(
x(k)

)]

≤
∑
j∈J(k)

c

⎡⎢⎢⎣2 ∣∣cj (x(k)
)∣∣ ∣∣∣(Δy(k)c

)
j

∣∣∣︸ ︷︷ ︸
≤ymax, (99)

− (ρc)j c
2
j

(
x(k)

)⎤⎥⎥⎦
≤

∑
j∈J(k)

c

[
2
∣∣cj (x(k)

)∣∣ ymax − (ρc)j c
2
j

(
x(k)

)]
(100)

In the case of cj
(
x(k)

)
= 0, the corresponding term of (b) is equal to zero. We define

Z(k)
c :=

{
j ∈ J (k)

c

∣∣ cj (x(k)
)
= 0

}
. (101)

To ensure property (94), we assume that the penalty parameters (ρc)j , j ∈ J
(k)
c \Z(k)

c are

larger than
(
ρ
(k)
1

)
j
, j ∈ J

(k)
c given by(

ρ
(k)
1

)
j
:=

2ymax

|cj (x(k))| , i.e.,
(
ρ
(k)
1

)
j
≤ (ρc)j , ∀j ∈ J (k)

c \Z(k)
c . (102)

With (102) in (100) we get∑
j∈J(k)

c

[
2cj

(
x(k)

) (
Δy(k)c

)
j
− (ρc)j c

2
j

(
x(k)

)]
=

∑
j∈J(k)

c \Z(k)
c

[
2cj

(
x(k)

) (
Δy(k)c

)
j
− (ρc)j c

2
j

(
x(k)

)]
+

∑
j∈Z(k)

c

[
2cj

(
x(k)

) (
Δy(k)c

)
j
− (ρc)j c

2
j

(
x(k)

)]
︸ ︷︷ ︸

=0

≤
∑

j∈J(k)
c \Z(k)

c

[
2
∣∣cj (x(k)

)∣∣ ymax − (ρc)j c
2
j

(
x(k)

)]
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∑
j∈J(k)

c

[
2cj

(
x(k)

) (
Δy(k)c

)
j
− (ρc)j c

2
j

(
x(k)

)]
≤

∑
j∈J(k)

c \Z(k)
c

[
2
∣∣cj (x(k)

)∣∣ ymax −
(
ρ
(k)
1

)
j
c2j

(
x(k)

)]

=
∑

j∈J(k)
c \Z(k)

c

[
2
∣∣cj (x(k)

)∣∣ ymax − 2ymax

|cj (x(k))|c
2
j

(
x(k)

)]
=

∑
j∈J(k)

c \Z(k)
c

[
2
∣∣cj (x(k)

)∣∣ ymax − 2ymax

∣∣cj (x(k)
)∣∣]

= 0

In total we get ∑
j∈J(k)

c

[
2cj

(
x(k)

) (
Δy(k)c

)
j
− (ρc)j c

2
j

(
x(k)

)] ≤ 0 (103)

for each (ρc)j ≥ ρ
(k)
1 := max

j∈J(k)
c \Z(k)

c

{
2ymax

|cj(x(k))|
}
.

Considering (c):
The term contains the inactive inequality constraints with respect to the augmented
Lagrangian function. We get∣∣∣∣∣∣∣

∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

(
Δy(k)c

)
j

∣∣∣∣∣∣∣ ≤
∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

∣∣∣(v(k)c

)
j
− (

y(k)c

)
j

∣∣∣︸ ︷︷ ︸
≤ymax, (99)

≤ ymax

∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

≤ (ymax)
2
∑
j∈J(k)

c

1

(ρc)j

This can be summarized by∣∣∣∣∣∣∣
∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

(
Δy(k)c

)
j

∣∣∣∣∣∣∣ ≤ (ymax)
2

∑
j∈J(k)

c

1

(ρc)j
. (104)

24



To ensure property (94), we assume that the penalty parameters (ρc)j , j ∈ J
(k)

c are larger

than ρ
(k)
2 given by:

ρ
(k)
2 := mc

10 (ymax)
2

η(k) ‖z(k) − x(k)‖2 , i.e., ρ
(k)
2 ≤ (ρc)j , j ∈ J

(k)

c . (105)

Using (104) and the definition of ρ
(k)
2 in (105) we get∣∣∣∣∣∣∣

∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

(
Δy(k)c

)
j

∣∣∣∣∣∣∣ ≤ (ymax)
2
∑
j∈J(k)

c

1

(ρc)j

≤ (ymax)
2
∑
j∈J(k)

c

1

ρ
(k)
2

≤ mc (ymax)
2

ρ
(k)
2

=
mc (ymax)

2 η(k)
∥∥z(k) − x(k)

∥∥2

10mc (ymax)
2

=
η(k)

∥∥z(k) − x(k)
∥∥2

10

As result we get ∣∣∣∣∣∣∣
∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

(
Δy(k)c

)
j

∣∣∣∣∣∣∣ ≤ η(k)
∥∥z(k) − x(k)

∥∥2

10
, (106)

for each (ρc)j ≥ ρ
(k)
2 , j ∈ J

(k)
e .

Considering the feasibility constraints we can exploit the fact, that each iterate is
feasible, i.e., the following inequalities hold

ej
(
x(k)

) ≤ 0, j = 1, . . . , mf (107)

ej
(
z(k)

) ≤ 0, j = 1, . . . , mf (108)

Considering (d):
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Due to (35) we get for each j ∈ J
(k)
e

0 ≥ ej
(
x(k)

) ≥
−

(
y
(k)
e

)
j

(ρe)j(
y
(k)
e

)
j

(ρe)j
≥ −ej

(
x(k)

)
=

∣∣ej (x(k)
)∣∣

This leads to ∣∣∣∣∣∣
∑
j∈J(k)

e

(
y(k)e

)
j
ej

(
x(k)

)∣∣∣∣∣∣ ≤ ymax

∑
j∈J(k)

e

∣∣ej (x(k)
)∣∣

≤ ymax

∑
j∈J(k)

e

(
y
(k)
e

)
j

(ρe)j

≤ (ymax)
2
∑
j∈J(k)

e

1

(ρe)j

To ensure property (94), we assume that the penalty parameters (ρe)j , j ∈ J
(k)
e are larger

than ρ
(k)
3 given by:

ρ
(k)
3 := mf

10 (ymax)
2

η(k) ‖z(k) − x(k)‖2 , i.e., ρ
(k)
3 ≤ (ρe)j , j ∈ J (k)

e (109)

which leads to ∣∣∣∣∣∣
∑
j∈J(k)

e

(
y(k)e

)
j
ej

(
x(k)

)∣∣∣∣∣∣ ≤ (ymax)
2

∑
j∈J(k)

e

1

(ρe)j

≤ (ymax)
2

∑
j∈J(k)

e

1

ρ
(k)
3

≤ (ymax)
2mf

1

ρ
(k)
3

= (ymax)
2mf

η(k)
∥∥z(k) − x(k)

∥∥2

10mf (ymax)
2

=
η(k)

∥∥z(k) − x(k)
∥∥2

10
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As result we get ∣∣∣∣∣∣
∑
j∈J(k)

e

(
y(k)e

)
j
ej

(
x(k)

)∣∣∣∣∣∣ ≤ η(k)
∥∥z(k) − x(k)

∥∥2

10
(110)

for each (ρe)j ≥ ρ
(k)
3 , j ∈ J

(k)
e .

Considering (e):
Analogue to (d) we can show that∣∣∣∣∣∣

∑
j∈J(k)

e

ej
(
x(k)

) (
Δy(k)e

)
j

∣∣∣∣∣∣ ≤
∑
j∈J(k)

e

∣∣ej (x(k)
)∣∣ ∣∣∣(Δy(k)e

)
j

∣∣∣
≤ ymax

∑
j∈J(k)

e

∣∣ej (x(k)
)∣∣

≤ ymax

∑
j∈J(k)

e

(
y
(k)
e

)
j

(ρe)j

≤ (ymax)
2
∑
j∈J(k)

e

1

(ρe)j

To ensure property (94), we assume that the penalty parameters (ρe)j , j ∈ J
(k)
e are larger

than ρ
(k)
3 given by (109) which leads to∣∣∣∣∣∣

∑
j∈J(k)

e

(
y(k)e

)
j
ej

(
x(k)

)∣∣∣∣∣∣ ≤ (ymax)
2

∑
j∈J(k)

e

1

(ρe)j

≤ (ymax)
2

∑
j∈J(k)

e

1

ρ
(k)
3

≤ (ymax)
2mf

1

ρ
(k)
3

= (ymax)
2mf

η(k)
∥∥z(k) − x(k)

∥∥2

10mf (ymax)
2

=
η(k)

∥∥z(k) − x(k)
∥∥2

10

27



As result we get ∣∣∣∣∣∣
∑
j∈J(k)

e

(
y(k)e

)
j
ej

(
x(k)

)∣∣∣∣∣∣ ≤ η(k)
∥∥z(k) − x(k)

∥∥2

10
(111)

for each (ρe)j ≥ ρ
(k)
3 , j ∈ J

(k)

c .

Considering (f):
It can be shown analogously to (c) that∣∣∣∣∣∣∣

∑
j∈J(k)

e

(
y
(k)
e

)
j

(ρe)j

(
Δy(k)e

)
j

∣∣∣∣∣∣∣ ≤ η(k)
∥∥z(k) − x(k)

∥∥2

10
(112)

for

(ρe)j ≥ ρ
(k)
3 := mf

10 (ymax)
2

η(k) ‖z(k) − x(k)‖2 , j ∈ J
(k)

e . (113)
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Proceeding from (96) we can summarize previous calculations as follows:

∇Φρ

(
x(k)

y(k)

)T

d(k)

≤ −∇Rf(k)

(
z(k)

)T
Δx(k)︸ ︷︷ ︸

≤−η(k)‖z(k)−x(k)‖2
, (98)

+
∑
j∈J(k)

c

2cj
(
x(k)

) (
Δy(k)c

)
j
−

∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)

)
︸ ︷︷ ︸

≤0, (103)

−
∑
j∈J(k)

c

(
y
(k)
c

)
j

(ρc)j

(
Δy(k)c

)
j︸ ︷︷ ︸

≤
η(k)‖z(k)−x(k)‖2

10
, (106)

−
∑

j∈J(k)
e

(
y(k)e

)
j
ej

(
x(k)

)
︸ ︷︷ ︸
≤

η(k)‖z(k)−x(k)‖2

10
, (110)

+
∑
j∈J(k)

e

ej
(
x(k)

) (
Δy(k)e

)
j︸ ︷︷ ︸

≤
η(k)‖z(k)−x(k)‖2

10
, (111)

−
∑

j∈J(k)
e

(
y
(k)
e

)
j

(ρe)j

(
Δy(k)e

)
j︸ ︷︷ ︸

≤
η(k)‖z(k)−x(k)‖2

10
, (112)

≤ −η(k)
(
δ(k)

)2
+

η(k)
∥∥z(k) − x(k)

∥∥2

10
+

η(k)
∥∥z(k) − x(k)

∥∥2

10

+
η(k)

∥∥z(k) − x(k)
∥∥2

10
+

η(k)
∥∥z(k) − x(k)

∥∥2

10

< −η(k)
∥∥z(k) − x(k)

∥∥2

2
< 0

for (ρc)j ≥ ρ(k)c with ρ(k)c := max{ρ(k)1 , ρ
(k)
2 }, ∀j = 1, . . . , mc, and (ρe)j ≥ ρ(k)e with ρ(k)e :=

ρ
(k)
3 , ∀j = 1, . . . , mf .

To prove a convergence property, it is essential to show that there exist a subsequence
of {x(k)} with

∥∥Δx(k)
∥∥ ≤ ε, see Schittkowski [43].

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Let
{
x(k), y(k)

}
be computed by

Algorithm 2. Then there exists for each ε > 0 at least one k such that∥∥Δx(k)
∥∥ ≤ ε. (114)

29



Proof. We prove by contradiction, that (114) holds for at least one k. We assume that∥∥Δx(k)
∥∥ > ε for a fixed ε and each k. We consider the sequence

{
x(k), y(k)

}
starting in

iteration k and define the corresponding constant vector of penalty parameters by ρr.
Moreover,

∇Φρr

(
x(k)

y(k)

)T

d(k) < −ηε2

2
< 0 (115)

holds with d(k) :=

(
z(k) − x(k)

v(k) − y(k)

)
�= �0, see Theorem 3.1. There exists a i0 independent

from k such that the Armijo condition (25) is satisfied for all i ≥ i0, see Schittkowski [43].
As a consequence σ(k) ≥ σ := βi0 and we get

Φρr

(
x(k)

y(k)

)
− Φρr

((
x(k)

y(k)

)
− σ(k)d(k)

)
≥ −μ σ(k)︸︷︷︸

≥σ

∇Φρr

(
x(k)

y(k)

)T

d(k)︸ ︷︷ ︸
≤− ηε2

2

≥ μσ
ηε2

2

for all k ≥ k. This leads to

lim
i→∞

Φρr

(
x(k)

y(k)

)
= −∞, (116)

which is a contradiction to Lemma 3.1. Therefore, the assumption is wrong and (114)
holds for at least one k.

With these results it is possible to formulate and prove the main convergence theorem,
see Zillober [55] Theorem 5.12, and Schittkowski [43] respectively.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold. Let
{
x(k)

}
,
{
y(k)

}
,
{
z(k)

}
,{

v(k)
}
, be computed by Algorithm 2. Then there exists an accumulation point (x�, v�) of{

(x(k), v(k))
}
satisfying the KKT conditions for problem (1).

Proof. The primal and dual iterates
{
x(k), v(k)

}
are elements of the bounded set (F × Y )

with Y := {y ∈ R
mc+mf | y ∈ [ �0, ymax1]}, where 1 is a vector of ones of appropriate size

and F is defined by (2). The results of Theorem 3.2 and the boundedness of
{
x(k)

}
and

{
v(k)

}
, guarantee the existence of at least one accumulation point (x�, v�) and of an

infinite subset S ⊆ N such that

lim
k∈S

Δx(k) = 0, (117)

lim
k∈S

x(k) = x�, (118)

lim
k∈S

v(k) = v�. (119)
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The statement follows then directly from the KKT conditions of subproblem (12) and the
transition to the limit Δx(k( → 0, see Lehmann [32] for details.

4 Free Material Optimization

The goal of free material optimization (FMO), see Bendsøe et. al. [7] and Zowe, Kočvara
and Bendsøe [62], is to find the best mechanical structure in the sense of minimal weight
or maximal stiffness with respect to a set of given loads based on a finite element dis-
cretization. Moreover, additional constraints have to be satisfied. The material itself, as
well as its distribution in the available space is optimized. As shown, e.g., by Kočvara and
Stingl [30], the FMO problem can be formulated as a nonlinear semidefinite programming
(NSDP) problem. Other problem formulations are given by Kočvara, Beck, Ben-Tal and
Stingl [27].

FMO was first introduced by Bendsøe et al. [7], Bendsøe and Dı́az [6], Bendsøe [5]
and Zowe, Kočvara and Bendsøe [62]. The continuous problem formulation leads to a
saddle-point problem for which the existence of a solution can be shown, see Mach [34]
and Werner [53]. Based on a finite element discretization, in each finite element it is
determined which material is used. The goal is to find the distribution of material such
that the resulting structure becomes as stiff as possible, i.e., the compliance becomes as
small as possible.

We define the space of symmetric matrices of size p by Sp. Moreover, symmetric
positive semidefinite matrices of size p are defined by S

p
+ and symmetric positive definite

matrices by S
p
++.

We proceed from a bounded domain Ω in the two or three dimensional space with
a Lipschitz boundary and a corresponding underlying finite element (FE) discretization
with m elements and q nodes of the design space. For a detailed description of the
Lipschitz boundary, we refer the reader to, e.g., Werner [53] and for the FE theory to,
e.g., Mach [34].

The design variable E is a block diagonal matrix consisting of symmetric matrices
Ei, i = 1, . . . , m, that represent material properties in each finite element. The matrices
Ei, i = 1, . . . , m, have to be symmetric and positive semidefinite, to satisfy the basic
requirements of linear elasticity, see Bendsøe et. al. [7]. Moreover, the variables might be-
come zero in some regions. This situation is known as vanishing material and interpreted
as void.

The design variable E is a matrix, dependent on the dimension of the given design
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space and the number of finite elements m.

E :=

⎛⎜⎜⎜⎝
E1 0

E2

. . .

0 Em

⎞⎟⎟⎟⎠ (120)

For the two dimensional space the matrices Ei, i = 1, . . . , m, are 3× 3 matrices

Ei :=

⎛⎝ ei1 ei2 ei4
ei2 ei3 ei5
ei4 ei5 ei6

⎞⎠ � 0, i = 1, . . . , m, (121)

see, e.g., Werner [53] for a detailed description of the derivation. This yields 6 variables
for each matrix Ei, i = 1, . . . , m, since Ei is symmetric. In the three dimensional space
we get 6× 6 matrices, i.e., 21 variables for each matrix

Ei :=

⎛⎜⎜⎜⎜⎜⎜⎝
ei1 ei2 ei4 ei7 ei11 ei16
ei2 ei3 ei5 ei8 ei12 ei17
ei4 ei5 ei6 ei9 ei13 ei18
ei7 ei8 ei9 ei10 ei14 ei19
ei11 ei12 ei13 ei14 ei15 ei20
ei16 ei17 ei18 ei19 ei20 ei21

⎞⎟⎟⎟⎟⎟⎟⎠ � 0, i = 1, . . . , m. (122)

Therefore,

E ∈ S
3m
+ , (123)

Ei ∈ S
3
+, i = 1, . . . , m (124)

holds for the two dimensional case and

E ∈ S
6m
+ , (125)

Ei ∈ S
6
+, i = 1, . . . , m (126)

for the three dimensional case, respectively, where m is the number of finite elements. In
the sequel, we focus on the two dimensional case.

The so-called compliance function is a measure of the stiffness of the resulting struc-
ture. The smaller the value of the compliance the more robust is the structure with
respect to loads fj ∈ R2q, j = 1, . . . , l, where l denotes the number of load cases and q the
number of nodes. The stiffness of the structure is dependent on the material properties of
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each element Ei, i = 1, . . . , m, and is given by the global stiffness matrix K (E) ∈ R2q×2q,
see Ciarlet [14],

K (E) :=
m∑
i=1

Ki (E) (127)

Ki (E) :=

ng∑
k=1

BT
i,kEiBi,k (128)

where Ki(E) ∈ R
2q×2q, Bi,k ∈ R

3×2q and ng ∈ R defines the number of Gauss integration
points. A detailed description how to compute the matrices Bi,k is given in Hörnlein,
Kočvara and Werner [24], Kočvara and Zowe [31], Zowe, Kočvara and Bendsøe [62]. The
behavior of the structure with respect to loads fj , j = 1, . . . , l, is given by

fT
j uj (E) , j = 1, . . . , l, (129)

where uj (E) ∈ R2q, j = 1, . . . , l, is the displacement vector.

The displacement vector is determined by the equilibrium condition

K (E) uj (E) = fj, j = 1, . . . , l (130)

derived from linear Hooke’s law, which describes the equilibrium of internal forces and
the acting loads. This means

K (E) uj (E) = fj ⇐⇒ uj (E) = K (E)−1 fj , j = 1, . . . , l, (131)

=⇒ fT
j uj (E) = fT

j K (E)−1 fj, j = 1, . . . , l, (132)

where K−1 (E) fj can be computed by solving the linear system (130) to save computa-
tional effort.

To ensure that the linear system is solvable we request that K (E) is positive definite,
i.e., K (E) ∈ S

2r
++. This leads to the requirement that each matrix Ei, i = 1, . . . , m is

positive definite, since

K (E) ∈ S
2r
++ ⇐⇒ E ∈ S

3m
++ (133)

⇐⇒ Ei ∈ S
3
++, i = 1, . . . , m (134)

Therefore, we require Ei − νI � 0, i = 1, . . . , m, where I is the identity matrix and
ν ∈ R+ is a small positive value, see Kočvara and Stingl [29]. We have to ensure, that
the semidefinite constraints Ei − νI � 0, i = 1, . . . , m, are satisfied, whenever the linear
system (130) is to be solved.

As FMO treats multiple load cases, i.e., different set of loads are acting independently,
we introduce an additional variable α ∈ R, which is to be minimized, requiring for each
load case

fT
j K

−1 (E) fj ≤ α, j = 1, . . . , l, (135)
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see Ben-Tal, Kočvara, Nemirovski and Zowe [4].

The sum of the diagonal elements of the matrices Ei, i = 1, . . . , m, is a measure for
stiffness of the material in coordinate directions. The trace of Ei, i = 1, . . . , m, can be
used as a cost function, see Bendsøe et al. [7], to represent the limited amount of material.
We introduce the upper bound V ∈ R and require

m∑
i=1

Trace (Ei) ≤ V, (136)

Trace (Ei) := ei1 + ei3 + ei6, i = 1, . . . , m (137)

The trace of each element is bounded by ν ∈ R
+, since it is not possible to produce

arbitrarily stiff material. This leads to

Trace (Ei) ≤ ν, i = 1, . . . , m, (138)

see, e.g., Ben-Tal, Kočvara, Nemirovski and Zowe [4]. Moreover, from Ei − νI � 0,
i = 1, . . . , m, we derive additional lower bounds on the trace, i.e.,

3ν ≤ Trace (Ei) , i = 1, . . . , m. (139)

They can be expressed as box constraints for the diagonal variables, i.e., ei1, ei3 and ei6,

ei1 ≥ ν, (140)

ei3 ≥ ν, (141)

ei6 ≥ ν. (142)

In the three dimensional case, the variables ei1, ei3, ei6, ei10, ei15 and ei21 are restricted. In
general, there are two possibilities to formulate the free material optimization problem.

One possibility is to minimize the volume function
m∑
i=1

Trace (Ei) with respect to a given

stability of the resulting structure. Another approach maximizes the stiffness with respect
to a limited volume. We focus on the second approach, which results in the nonlinear
convex semidefinite problem

min
E,α

α E ∈ S3m, α ∈ R

s.t.
m∑
i=1

Trace (Ei)− V ≤ 0

Trace (Ei)− ν ≤ 0, i = 1, . . . , m

Ei − νI � 0, i = 1, . . . , m

fT
j K (E)−1 fj − α ≤ 0, j = 1, . . . , l

ei1 ≥ ν, i = 1, . . . , m

ei3 ≥ ν, i = 1, . . . , m

ei6 ≥ ν, i = 1, . . . , m

(143)
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The optimization variables are the entries eip, p = 1, . . . , 6 of the elementary stiff-
ness matrices Ei, i = 1, . . . , m. The derivatives are specified in Ertel, Schittkowski and
Zillober [16] for all i = 1, . . . , m, p = 1, . . . , 6 by

∂

∂eip

(
m∑
i=1

Trace (Ei)− V

)
=

{
1, if p = 1, 3, 6
0, otherwise

(144)

∂

∂eip
(Trace (Ei)− ν) =

{
1, if p = 1, 3, 6
0, otherwise

(145)

∂

∂eip

(
fT
j K (E)−1 fj − α

)
= −uj (E)T

(
∂K (E)

∂eip

)
uj (E) (146)

∂

∂eip
K (E) =

∂

∂eip

(
m∑
i=1

ng∑
k=1

BT
i,kEiBi,k

)

=

m∑
i=1

ng∑
k=1

BT
i,k

∂Ei

∂eip
Bi,k (147)

with

∂Ei

∂eip
=

([
1 0 0
0 0 0
0 0 0

]
,
[

0 1 0
1 0 0
0 0 0

]
,
[

0 0 0
0 1 0
0 0 0

]
,
[

0 0 1
0 0 0
1 0 0

]
,
[

0 0 0
0 0 1
0 1 0

]
,
[

0 0 0
0 0 0
0 0 1

])T

(148)

Moreover, additional constraints can be added to optimization problem (143). Espe-
cially stress constraints, such as ’von Mises stress conditions’, see, e.g., Li, Steven and
Xie [33], are very important from the engineering point of view. In the two dimensional
space the von Mises stress in an element i ∈ {1, . . . , m} , and load case j ∈ {1, . . . , l} ,
can be formulated as

si,j (E) :=

ng∑
k=1

uj (E)T BT
i,kEiIEiBi,kuj (E) (149)

with

I =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (150)

see Kočvara and Stingl [30]. The integration of stress constraints lead to numerical prob-
lems for the optimization method, as regularity conditions such as the linear independency
constraint qualification, are not satisfied, see Achtziger and Kanzow [1] and Stingl [46].
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To ensure stability si,j (E) may not exceed a given threshold sσ ∈ R+. For each load
case j ∈ {1, . . . , l}, and each element i ∈ {1, . . . , m}, we get one additional constraint
that can be added to (143):

si,j (E) ≤ sσ, i = 1, . . . , m, j = 1, . . . , l. (151)

The corresponding derivatives are given by

∂

∂eip

(
ng∑
k=1

uj (E)T BT
i,kEiIEiBi,kuj (E)− sσ

)

=

ng∑
k=1

−2uj (E)T K−1 (E)
∂K (E)

∂eip
BT

i,kEiIEiBi,kuj (E) (152)

+

ng∑
k=1

2uj (E)T BT
i,k

∂Ei

∂eip
IEiBi,kuj (E) ,

see Ertel, Schittkowski, and Zillober [16].

Our goal is to solve (143) by Algorithm 2. Since the feasible SCP method is not de-
signed to handle semidefinite constraints, they are reformulated by nonlinear constraints.
Benson and Vanderbei [9] compute the eigenvalues of Ei − νI successively based on a re-
cursion formula, which could be used to define the feasibility functions The disadvantage,
however, is that one has to invert matrices, which are positive definite only within the
feasible region. At the boundary of F , we would get singularities.

Thus, we modify their approach. The idea is to consider the submatrices of matrix
E ′. A matrix is positive semidefinite, if each submatrix is positive semidefinite, i.e.,

E ′ � 0 ⇐⇒ E ′
j � 0, ∀j = 1, . . . , 3m (153)

where E ′
j ∈ Sj describes the j-th submatrix of E ′. Moreover, a matrix E ′ is positive

semidefinite, if the corresponding subdeterminants are greater or equal to zero. We get

E ′ � 0 ⇐⇒ dj (E
′) ≥ 0, ∀j = 1, . . . , 3m (154)

where dj (E
′) , j = 1, . . . , 3m, is the determinant of Ej given by the Laplace formula

dj (E
′) := det

(
E ′

j

)
=

j∑
q=1

(−1)p+q kpq det
((

E ′
j

)
pq

)
, (155)

and where kpq is the element of E ′ in row p and column q. Moreover,
(
E ′

j

)
pq

is the
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submatrix of E ′
j reduced by row p and column q, i.e.,

E ′
pq :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

k11 . . . k1 q−1 k1 q+1 . . . k1 3m
...

...
...

...
kp−1 1 . . . kp−1 q−1 kp−1 q+1 . . . kp−1 3m

kp+1 1 . . . kp+1 q−1 kp+1 q+1 . . . kp+1 3m
...

...
...

...
k3m 1 . . . k3m q−1 k3m q+1 . . . k3m 3m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(156)

It can be shown that the resulting functions dj (E
′) , j = 1, . . . , 3m are nonconvex and

polynomial. As (154) holds, the feasible region defined by dj (E
′) ≥ 0, j = 1, . . . , 3m, is

convex. The design variable E ′ is block diagonal, i.e., of the form

E ′ :=

⎛⎜⎜⎜⎜⎜⎝
� 0 0 · · · 0
0 � 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 � 0
0 · · · · · · 0 �

⎞⎟⎟⎟⎟⎟⎠ (157)

Therefore it is sufficient to show that each 3 × 3 block � of E ′ is positive semidefinite.
The blocks are given by Ei − νI, i = 1, . . . , m. We get the following three inequality
constraints from (155) and (121)

di1 (Ei − νI) := ei1 − ν ≥ 0 (158)

di2 (Ei − νI) := (ei3 − ν) (ei1 − ν)− e2i2 ≥ 0 (159)

di3 (Ei − νI) := (ei6 − ν)
(
(ei3 − ν) (ei1 − ν)− e2i2

)
−e2i4 (ei3 − ν)− e2i5 (ei1 − ν) + 2ei2ei4ei5 ≥ 0 (160)

for each elementary stiffness matrix Ei, i = 1, . . . , m. As the first submatrix of a block
Ei − νI, i = 1, . . . , m, consists of only one element, it can be handled as box constraint.
Therefore, 2m additional constraints have to be introduced.

The following problem formulation (161) is equivalent to (143) and can be solved
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efficiently by Algorithm 2.

min
E,α

α E ∈ S3m, α ∈ R

s.t.

m∑
i=1

Trace (Ei)− V ≤ 0

Trace (Ei)− ν ≤ 0, i = 1, . . . , m

fT
j K (E)−1 fj − α ≤ 0, j = 1, . . . , l

(ei3 − ν) (ei1 − ν)− e2i2 ≥ 0, i = 1, . . . , m

(ei6 − ν) ((ei3 − ν) (ei1 − ν)− e2i2)
−e2i4 (ei3 − ν)− e2i5 (ei1 − ν) + 2ei2ei4ei5 ≥ 0, i = 1, . . . , m

ei1 ≥ ν, i = 1, . . . , m

ei3 ≥ ν, i = 1, . . . , m

ei6 ≥ ν, i = 1, . . . , m

(161)

This problem is nonlinear and nonconvex but exhibits a convex feasible region, as the
constraints dj (E

′) ≥ 0, j = 1, . . . , 3m, describe a convex domain.

Applying Algorithm 2 to solve (161), we have to compute first and second order
derivatives and evaluate the problem functions efficiently. The first subdeterminant is
handled as a box constraint while the first and second order derivatives of di2 (Ei − νI)
and di3 (Ei − νI) , i = 1, . . . , m, are given explicitly. We consider an arbitrary finite
element i ∈ {1, . . . , m} and the corresponding matrix Ei. The determinant of the (2× 2)
submatrix is dependent on three variables. We get

di2 (Ei − νI) = (ei3 − ν) (ei1 − ν)− e2i2 (162)

∂di2 (Ei − νI)

∂eip
=

⎛⎜⎜⎜⎜⎜⎜⎝
ei3 − ν
−2ei2
ei1 − ν

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ (163)

∂di2 (Ei − νI)

∂eip∂eiq
=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0 0 0
0 −2 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (164)

38



The determinant of the (3× 3) matrix is dependent on all variables. Its first and second
order derivatives are

di3 (Ei − νI) := (ei6 − ν)
(
(ei3 − ν) (ei1 − ν)− e2i2

)
−e2i4 (ei3 − ν)− e2i5 (ei1 − ν) + 2ei2ei4ei5

= (ei6 − ν) di2 (Ei − νI)− e2i4 (ei3 − ν)− e2i5 (ei1 − ν)

+2ei2ei4ei5 (165)

∂di3 (Ei − νI)

∂eip
=

⎛⎜⎜⎜⎜⎜⎜⎝
(ei3 − ν) (ei6 − ν)− e2i5
2ei4ei5 − 2ei2 (ei6 − ν)
(ei1 − ν) (ei6 − ν)− e2i4
2ei2ei5 − 2 (ei3 − ν) ei4
2ei2ei4 − 2ei5 (ei1 − ν)

di2 (Ei − νI)

⎞⎟⎟⎟⎟⎟⎟⎠ (166)

∂di3 (Ei − νI)

∂eip∂eiq
=⎛⎜⎜⎜⎜⎜⎜⎝

0 0 ei6 − ν 0 −2ei5 ei3 − ν
0 −2 (ei6 − ν) 0 2ei5 2ei4 −2ei2

ei6 − ν 0 0 −2ei4 0 ei1 − ν
0 2ei5 −2ei4 −2 (ei3 − ν) 2ei2 0

−2ei5 2ei4 0 2ei2 −2 (ei1 − ν) 0
ei3 − ν −2ei2 ei1 − ν 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (167)

5 Numerical Implementation and Results

Algorithm 2 is implemented in Fortran and the subroutine is called SCPF10. The user has
to provide function and gradient values for all functions, moreover the Hessian matrice of
the feasibility constraints. The outer iteration sequence consists of the iterates computed
by Algorithm 2. Note that the gradients are to be computed for constraints included in
an estimate of the active set.

Subproblem (12) is solved iteratively. During this inner iterations, functions, gradients
and second order derivatives are to be evaluated only for the feasibility constraints ej (x),
j = 1, . . ., mf . The subproblems are solved by IPOPT, see Wächter and Biegler [52].
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We proceed from the FMO problem (161), now written in the form i.e.,

min
E,α

α E ∈ S3m, α ∈ R

s.t.
m∑
i=1

Trace (Ei)− V ≤ 0

Trace (Ei)− ν ≤ 0, i = 1, . . . , m

fT
j K (E)−1 fj − α ≤ 0, j = 1, . . . , l

−di2 (Ei − νI) ≤ −ε, i = 1, . . . , m

−di3 (Ei − νI) ≤ −ε, i = 1, . . . , m

eip ≤ e, i = 1, . . . , m, p = 1, . . . , 6

eip ≥ e, i = 1, . . . , m, p = 2, 4, 5

eip ≥ ed, i = 1, . . . , m, p = 1, 3, 4

α ≤ α ≤ α

(168)

with

di2 (Ei − νI) := (ei3 − ν) (ei1 − ν)− e2i2 (169)

di3 (Ei − νI) := (ei6 − ν)
(
(ei3 − ν) (ei1 − ν)− e2i2

)
−e2i4 (ei3 − ν)− e2i5 (ei1 − ν) + 2ei2ei4ei5 (170)

The parameter ε ∈ R+ is introduced to prevent numerical instabilities in case of vanishing
material and is a small tolerance. Otherwise, the linear independency constraint quali-
fication might be violated. Moreover, we introduce box constraints for each variable to
ensure a compact feasible set F , defined by

F := {eip ∈ R, i = 1, . . . , m, p = 1, . . . , 6 | −di2 (Ei − νI) ≤ −ε}
∩ {eip ∈ R, i = 1, . . . , m, p = 1, . . . , 6 | −di3 (Ei − νI) ≤ −ε} (171)

∩ X

with

X := {eip ∈ R, i = 1, . . . , m, p = 2, 4, 5 | e ≤ eip ≤ e}
∩ {eip ∈ R, i = 1, . . . , m, p = 1, 3, 4 | ed ≤ eip ≤ e} (172)

∩{α ∈ R | α ≤ α ≤ α}
Note that the lower bound on diagonal entries ensures that ei1 − ν �= 0, i.e., ed > ν.

Variables are stored in stacked form x ∈ R
6m+1, i.e., six variables for each Ei, i =

1, . . . , m, and the additional variable α,

x := (e11, e12, e13, e14, e15, e16, e21, e22, . . . , em6, α)
T . (173)
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All parameters of (168) are summarized in Table 1.

Parameter Value

E(0) 10I

α(0) 1.2

e 1.D5

e -1.D5

ed 0.33333

α 1.D5

α 0.D0

ε 1.D-1

ν 100

ν 0.3333

V 0.3333ν

sσ 1.D1

Table 1: Parameters solving free material optimization problems

The active set parameter a is set to 1.1, while the stopping accuracy is 1.D-5.

The nonlinear FMO problem (168) is to be solved by Algorithm 2. The algorithm was
integrated into the PLATO-N interface, see Boyd [13]. We consider given test cases of the
PLATO-N academic test case library, see Bogomolny [12]. An overview of the test set is
given in Figure 1. Fixed nodes are denoted by � or � , while
allows to move in horizontal direction. Loads are specified by arrows pointing at the
corresponding node. In case of several load cases the loads are enumerated. Note that
the test case library does not always use the same discretization granularity for the test
cases.

Figure 1: Test cases, see Bogomolny [12]

Some results are illustrated by plotting the traces of each finite element, see Bodnár [11],
and some further data and numerical results are listed in Table 2.

Figure 2: Color Scheme
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Figure 3: Single Load Problem 1 with 384 Elements

Figure 4: Single Load Problem 2 with 9.500 Elements

Test Variables Regular Feasibility Total Iterations Time Load
case Constraints Constraints Constraints cases

1.1 577 98 192 290 123 2min 19sec 1
1.2 2.305 386 768 1.154 274 25min 14sec 1

2.1 577 98 192 290 284 5min 38sec 1
2.2 2.305 386 768 1.154 148 12min 33sec 1
2.3 57.601 9.602 19.200 28.802 331 17h 36min 1

3.1 577 99 192 291 108 2min 5sec 2
3.2 2.305 387 768 1.155 419 39min 4sec 2
3.3 57.601 9.603 19.200 28.803 400 20h 48min 2

4.1 1.801 302 600 902 185 10min 42sec 1
4.1stress 1.801 602 600 1.202 214 15min 34sec 1
4.2 7.801 1.202 2.400 3.602 183 38min 23sec 1
4.3 45.001 7.502 15.000 22.502 210 8h 22min 1

5.1 4.801 802 1.600 2.402 111 19min 55sec 1
5.2 120.001 20.002 40.000 60.002 300 48h 41min 1

Table 2: Data of numerical results

6 Conclusions

We propose a method by which objective function and constraints are always evaluated
at iterates, which are feasible subject to another set of convex inequality constraints, the
so-called feasibility constraints. To our knowledge, this approach is new. Proceeding from
an augmented Lagrangian merit function, sufficient decrease from one iterate to the next
is shown, and we are able to conclude that a stationary point is approximated.

Our main motivation is to solve free material optimization problems, where the positive

Figure 5: Single Load Problem 3 with 9.500 Elements
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Figure 6: Single Load Problem 4 with 7.500 elements

Figure 7: Single Load Problem 5 with 20.000 Elements

definite tensors are guaranteed by non-negative determinants of submatrices. Unfortu-
nately, the feasibility functions are no longer convex as requested by our FSCP method,
but, on the other hand, the feasible set F is at least convex. We did not observe irregu-
larities due to this drawback.

Feasibility constraints are passed to the analytical, convex, and separable subproblem
of a sequential convex programming algorithm, which then becomes a general convex
program. However, the special structure can be exploited depending on the structure of
the feasibility constraints, e.g., if they consist of simple analytical functions. In the same
way, it is possible to replace the outer SCP method by another one, e.g., an SQP method.

From the theoretical as well as the practical point of view, the assumption that re-
quirement feasibility constraints are convex, is quite restrictive. We need it due to the line
search procedure used. By applying other globalization techniques, e.g., a filter method,
we might overcome the convexity condition.

Although our implementation is efficient in case of 2D structures, additional efforts are
needed to improve computational performance in order to solve also 3D FMO problems
of reasonable size. A reduction of the calculation time is essential and could be achieved
by exploiting the special subproblem structure more than we did so far.
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[62] J. Zowe, M. Kočvara, and M. Bendsøe. Free material optimization via mathematical
programming. Mathematical Programming, Series B, 79:445–466, 1997.

48


