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Abstract

The purpose of the paper is to introduce a set of Mathcad worksheets contain-
ing differential algebraic (DAE) equations. They can be used to become familiar
with the Mathcad implementation of differential equations and with the behavior
of dynamical systems in general. The problems are taken from a collection of test
examples for data fitting in dynamical systems, see Schittkowski [17]. The report
contains a summary of 28 differential algebraic equations that have been transferred
to Mathcad and a detailed example. All worksheets can be downloaded from the
home page of the author2. A particular advantage of executing these problems from
Mathcad is the possibility to plot corresponding solutions very easily.

1 c©2003 Mathsoft Engineering & Education Inc.
2http://www.klaus-schittkowski.de
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1 Introduction

We consider systems of differential algebraic equations, which can be considered as exten-
sions of ordinary differential equations by adding algebraic equations and state variables.
For example, they describe certain equilibrium or steady-state conditions. The system de-
pends on md differential variables y(t) and ma algebraic variables z(t), and the dynamical
system is given in the form

ẏ1 = F1(y, z, t) , y1(0) = y0
1 ,

· · ·
ẏmd

= Fmd
(y, z, t) , ymd

(0) = y0
md

,

0 = G1(y, z, t) , z1(0) = z0
1 ,

· · ·
0 = Gma(y, z, t) , zma(0) = z0

ma
.

(1)

Without loss of generality, we assume again that the initial time is zero. If md = 0,
we get a steady-state system, and for ma = 0 a system of ordinary differential equa-
tions. The solution depends on the time variable t and is denoted by y(t) and z(t). It
is assumed that the right-hand side of (1) is defined by continuous functions F (y, z, t) =
(F1(y, z, t), . . . , Fmd

(y, z, t))T and G(y, z, t) = (G1(y, z, t), . . . , Gma(y, z, t))T .
We need initial values for the differential equations y0 = (y0

1, . . . , y
0
md

)T and also for
the algebraic equations z0 = (z0

1 , . . . , z
0
ma

)T . y(t) and z(t) represent the solution of a joint
system of md + ma differential and algebraic equations (DAE). The system is called an
index-1-problem or an index-1-DAE, if the algebraic equations can be solved with respect
to z. A necessary condition is that the Jacobian matrix

∇zG(y, z, t) (2)

possesses full rank. In all other cases, we obtain DAEs with a higher index, see Hairer
and Wanner [9] for a suitable definition and more details. Note that systems with higher
index can be transformed to systems of index 1 by successive differentiation of the alge-
braic equations, and that the number of these differentiations defines the index. Now we
consider only problems up to index 3.

We have to be very careful when defining the initial values of the DAE model, since
they must satisfy the consistency equation

G1(y0, z0, t) = 0 , . . . , Gma(y0, z0, t) = 0 . (3)

Otherwise, we have to check whether the consistency condition is satisfied before starting
the integration. If not, consistent initial values must be computed by solving the above
system of nonlinear equations subject to z, where the initial values of the differential
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equations are inserted. If this is not possible as in case of an index greater than 1, we
have to consider alternative equations obtained by one or two differentiations of (3) as
discussed in the subsequent section.

Example 1.1 We consider a unipolar hydrodynamic model for semiconductors in the
isotropic case discussed by Asher and Petzold [1] with two differential and one algebraic
equation of index 1,

d
dt

φ(t) = ρ(t)E(t)− αJ , φ(0) = 3.08 ,

d
dt

E(t) = ρ(t)− 1 , E(0) = −1.14 ,

0 = J2 + ρ(t)2 − φ(t)ρ(t) , ρ(0) = 1
2
φ(0) +

√
1
4
φ(0)2 − J2 ,

(4)

φ(t) and E(t) are the differential variables and ρ(t) is the algebraic variable. The initial
value for ρ(t) at t = 0 is consistent. Moreover, there are two constants J = 0.5 and
α = 0.1.

The software system EASY-FIT, see Schittkowski [17], comes with a collection of
1,000 test examples for data fitting in dynamical systems. Among them are 34 systems
of differential algebraic equations, where some parameters of the right-hand side or the
initial conditions are to be fitted. Most problems have some practical background.

However, the basic structure of these problems is more general and adopted to data
fitting. For example, some of the test problems possess additional constraints, there are
break or switching points where the system changes its structure, and some of the data
fitting test problems only differ in the data, not the dynamical system. Moreover, some of
the problems are too complex for the purpose of this collection. Thus, a subset of 28 test
problems is selected and re-implemented in Mathcad. The mcd-files can be downloaded
from the home page of the author,

http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm

The report is one out of a series of Mathcad test problem collections by which numer-
ical routines are tested and the implementation of optimization problems and dynamical
systems is outlined, i.e.,

1. nonlinear programming [19],

2. data fitting [20],

3. ordinary differential equations [21],

4. partial differential equations [22],

3



5. partial differential algebraic equations [23].

Section 2 contains a brief outline of the implicit integration routine called Odesolve
in Mathcad, which is used for all test cases. A simple example is shown in Section 3 to
illustrate the numerical solution of differential algebraic equations. A list of the Mathcad
worksheet files and some further details about problem structure, background, and source
is given in Section 4.

2 Implicit Solution Methods

A characteristic property of explicit integration methods for differential equations is that
a new approximation of the solution is evaluated explicitly from the known one at a
previous time, and from some intermediate function values of the right-hand side of the
differential equation. This iterative integration process breaks down in case of numerical
instability of the underlying differential equation called stiffness, or in case of algebraic
equations. In these situations, we need more powerful algorithms that are more stable
and can satisfy additional equations.

Typically, differential algebraic equations are solved by implicit solution methods, since
the internal solution of a system of nonlinear equations allows us to add the algebraic
constraints and to satisfy them in each iteration step. To analyze the situation in more
detail, we assume that a DAE of index 3 is given in explicit formulation

ẏ1 = F1(y1, y2, t) , y1(0) = y0
1 ,

ẏ2 = F2(y1, y2, z, t) , y2(0) = y0
2 ,

0 = G(y1, t) , z(0) = z0 ,

(5)

where F1 = (F 1
1 , . . . , F 1

md1
)T , F2 = (F 2

1 , . . . , F 2
md2

)T with md1 + md2 = md, and G =
(G1, . . . , Gma)

T . Consistent initial values have to satisfy the equations

G(y1, t) = 0 ,

∇y1G(y1, t)
T F1(y1, y2, t) = 0 ,

∇y1y1(G(y1, t), F1(y1, y2, t))

+∇y1G(y1, t)
T∇y1F1(y1, y2, t)

T F1(y1, y2, t)

+∇y1G(y1, t)
T∇y2F1(y1, y2, t)

T F2(y1, y2, z, t) = 0

(6)

at t = 0. Here ∇y1y1(G(y1, t), F1(y1, y2, t)) denotes the partial derivatives of ∇y1G(y1, t)
with respect to y1 applied to F1(y1, y2, t). Moreover, the index-3-assumption requires that
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the algebraic constraints in the reduced equivalent index-1-formulation can be eliminated.
The matrix

∇y1G(y1, t)
T∇y2F1(y1, y2, t)

T∇zF2(y1, y2, z, t)
T

is non-singular in a neighborhood of a solution. We call y1 the vector of index-1-variables,
y2 the vector of index-2-variables and z the vector of algebraic or index-3-variables.

Now we apply an implicit solution method for ordinary differential equations as dis-
cussed in Schittkowski [17, 21] defined by a so-called Butcher array. Let hj be a stepsize
of the j-th integration step, tj+1 = tj + hj a new trial point with t0 = 0 and η1

j , η2
j , and

ζj known approximations of the solution y1(tj), y2(tj), and z(tj). It is also assumed that
consistent initial values (6) are given for t = 0. Then a new approximation of the solution
is obtained from

η1
j+1 = η1

j + hj
∑r

i=1 bik
1
i ,

η2
j+1 = η2

j + hj
∑r

i=1 bik
2
i ,

ζj+1 = ζj + hj
∑r

i=1 bili ,

(7)

where the coefficients k1
i , k2

i and li depend on previous approximations and the current
one. They are computed by solving a system of nonlinear equations

k1
i = F1(Φ

1
j ,Φ

2
j , tj + hjci) ,

k2
i = F2(Φ

1
j ,Φ

2
j ,Ψj, tj + hjci) ,

li = G(Φ1
j , tj + hjci) ,

(8)

for i = 1, . . ., r with

Φ1
j = η1

j + hj

r∑
m=1

aimk1
m ,

Φ2
j = η2

j + hj

r∑
m=1

aimk2
m ,

Ψj = ζj + hj

r∑
m=1

aimlm .

(9)

The constant coefficients aim, ci and bi are chosen by any appropriate tableau, for example
by the Butcher array of type Radau IIA with three stages and order five,

4−√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−√
6

36
16+

√
6

36
1
9

16−√
6

36
16+

√
6

36
1
9

(10)
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For the modified implicit solution method, it is possible to prove that the system
of nonlinear equations (9) is always solvable and that a solution of the given equations
(1) is approximated, see Hairer, Lubich and Roche [8]. However, the local and global
convergence errors are somewhat different. The local error behaves on the order o(hq+1),
o(hq) and o(hq−1) with respect to Φ1, Φ2 and Ψ, respectively, where q = 3 for the Radau-
type algorithm defined by (10). Thus, it is recommended to adapt the error tolerances by
multiplying the index-2-variables by hj and the index-3-variables by hj

2.

3 A Mathcad Worksheet Example

Mathcad (http://www.mathcad.com) is an interactive GUI with a large number of built-in
mathematical functions. Special commands allow to solve systems of ordinary differen-
tial equations, especially stiff and differential algebraic equations by the implicit Radau
method introduced in the previous section. The subsequent lines describe the usage of
Odesolve for solving DAEs, see also the Mathcad documentation

The Odesolve function is used within solve blocks, allowing for natural notation, and
are the easiest to use and interpret. Odesolve(vector,x,b,[step]) returns a vector of func-
tions of x which is a solution to the system of ordinary differential algebraic equations,
subject to initial values provided in the solve block. The DAEs must be of first order, of
index 1,2, or 3, and explicitly given, see (1). Odesolve allows algebraic equations which
adds an extra unknown function for each equation to the system, which must be specified
as one of the output functions in the Odesolve call.

Arguments:

• vector is the explicit vector of function names as they appear within the solve block.

• x is the variable of integration and must be real.

• b is the terminal point of the integration interval.

• step is the optional number of steps used internally when calculating the solution.

A solve block refers to a group of steps involved when solving a system of differential
equations. Needed are initial the key word Given, a set of equations, and the solving
function Odesolve. Collectively, these steps are known as a solve block.

To give an impression how a test problem is implemented, we consider problem HY-
DRODYN, see Example 1.1. Subsequently, the Mathcad implementation is listed, see
Figures 1 and 2 . The mcd-file contains also an error plot of the algebraic equation
subject to the termination tolerance 0.001.
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Figure 1: Mathcad Implementation: Equations
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Figure 2: Mathcad Implementation: Plots
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4 List of All Test Problems

The subsequent table contains a list of all test problems together with the number of
differential equations md, the number of algebraic equations ma, a brief description of the
practical or mathematical background, and some references. The differential equations
have first been implemented in the modelling language PCOMP, see Dobmann et al. [6] or
Schittkowski [17, 16, 18]. The transformation into Mathcad worksheets follows a unified
format based on the PCOMP equations. Thus, the implementations do not exploit all
possible features of Mathcad to get the most elegant and compact description. All mcd-
files can be downloaded from the home page of the author3.

Differential Algebraic Equations

name md ma background ref
AEROSOL 2 2 Substrate concentration in two-phase aerosol devices
BATCH 6 3 Isothermal batch reactor, slow and fast reactions [3]
BATCH E 6 3 Isothermal batch reactor, slow and fast reactions, two data

sets
[3]

BATCHREA 6 1 Batch reactor [5]
BUBBLEC 8 5 Bubble point calculation for a batch distillation column [10]
CELLS 3 2 Cultivation of isolated plant cells in suspension culture [14]
CONDENS 1 5 Condensation of methanol with constant volume [15]
DAE I1 4 1 Academic example, index-1-formulation
DAE I2 4 1 Academic example, index-2-formulation
DAE I3 4 1 Academic example, index-3-formulation
DAE IN2 2 1 System of three differential algebraic equations of index 2 [1]
DAE SYS 1 2 Particle diffusion and reaction (2nd order BVP) [1]
EVAPOR 3 10 Evaporation of benzol with constant volume [11]
EXOBATCH 5 6 Batch reactor with strongly exothermic reactions and cool-

ing jacket
[24]

HYDRODYN 2 1 Unipolar hydrodynamic model for semiconductors in the
isotropic case

[1]

MEM WIRE 3 1 Optimal form of shape memory wires
P IDENT 2 1 Identification of parameters, academic example [12]

(continued)

3http://www.klaus-schittkowski.de
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name md ma background ref
PENDULUM1 4 1 Plain pendulum, index 3
PENDULUM2 4 1 Plain pendulum, index 2
PENDULUM3 4 1 Plain pendulum, index 1
PENDULUM4 4 1 Plain pendulum, index 0
PHOSPH A 3 2 Chemical reaction, phosphorescence
RESPIR 1 1 Human respiratory system [25]
SHOCK 6 3 Reaction zone in detonating explosives [7]
TRANSIST 3 2 Transistor amplifier, highly oscillating
TUBULAR 2 2 Stationary tubular reactor with cooling wall [13]
URETHAN 3 10 Urethan reaction in a semi batch reactor with two feed ves-

sels
[2]

VDPOL 1 1 Van der Pol equation, electrical circuit
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