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Abstract

The purpose of the paper is to introduce a set of data fitting test examples in
form of Mathcad2 worksheets. The availability of data fitting test problems is an
important assumption to develop and test least squares codes, to learn how op-
timization routines behave, or to become familiar with implementation and user
interface. The problems are taken from a collection of test examples for data fitting
in dynamical systems, see Schittkowski [40]. The report contains a brief introduc-
tion and review on least squares methods, moreover a summary of 96 data fitting
test problems that have been transferred to Mathcad and a detailed example. All
worksheets can be downloaded from the home page of the author3. A particu-
lar advantage of executing these problems from Mathcad is the possibility to plot
corresponding residuals easily.

1 c©2003 Mathsoft Engineering & Education Inc.
2http://www.mathcad.com
3http://www.klaus-schittkowski.de
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1 Introduction

Parameter estimation plays an important role in natural science, engineering, and many
other disciplines. The key idea is to estimate unknown parameters p1, . . ., pn of a mathe-
matical model that describes a real life situation, by minimizing the distance of some
known experimental data from theoretically predicted values of a model function at cer-
tain time values. Thus, model parameters that cannot be measured directly can be
identified by a least squares fit and analyzed subsequently in a quantitative way.

We consider parameter estimation problems, where a model function h(p, t) is available
in explicit form, the so-called fitting criterion, depending on the parameter vector p ∈ IRnp

to be estimated and an additional variable t called time. We proceed from nd experimental
data given in the form

(ti, yi, wi) , i = 1, . . . , nd , (1)

where nd time and corresponding measurement values are given. Moreover, we assume
that there are suitable weighting factors wi ≥ 0 given by the user to control the individual
influence of a measurement on the whole experiment.

The basic idea is to minimize the distances between the model function at certain
time points and the corresponding measurement values. These distances are called the
residuals of the data fitting problem. In the ideal case, the residuals are zero indicating a
perfect fit of the measurements by the model function.

In mathematical notation, we want to solve a least squares problem of the form

p ∈ IRn :
min

∑nd
i=1 wi(h(p, ti)− yi)

2

pl ≤ p ≤ pu ,
(2)

where pl and pu are suitable lower and upper bounds for the parameters to be estimated.

Example 1.1 We want to fit some parameters p1, . . ., p4, so that the data of Table 1 are
approximated by a rational function

h(p, t) = p1
t2 + p2t

t2 + p3t+ p4

,

see Lindström [24] and Deuflhard, Apostolescu [8]. All weights are set to 1 leading to the
least squares data fitting problem

p ∈ IR4 : min
∑l

i=1 (h(p, ti)− yi)
2 .

When starting the code DFNLP of Schittkowski [38] from p0 = (0.25, 0.39, 0.415, 0.39)T

with a termination tolerance of 10−12, we get the solution

p� = (0.1928, 0.1938, 0.1246, 0.1370)T
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Figure 1: Function and Data Plot

after 13 iterations with a final residual norm 3.1 · 10−4. Individual residuals and relative
errors are also listed in Table 1. Model function and data are plotted in Figure 1.

Table 1: Experimental Data and Final Residuals

ti yi error ti yi error
0.0625 0.0246 15.6 % 0.25 0.0844 10.0 %
0.0714 0.0235 2.9 % 0.5 0.16 7.0 %
0.0823 0.0323 11.9 % 1.0 0.1735 5.1 %
0.1 0.0342 3.9 % 2.0 0.1947 1.0 %
0.125 0.0456 0.2 % 4.0 0.1957 0.7 %
0.167 0.0627 0.2 %

The report is one out of a series of Mathcad test problem collections by which numer-
ical routines are tested and the implementation of optimization problems and dynamical
systems is outlined, i.e.,

1. nonlinear programming [42],

2. ordinary differential equations [43],

3. differential algebraic equations [44],
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4. partial differential equations [45],

5. partial differential algebraic equations [46].

Section 2 contains a brief outline of least squares optimality conditions which are
the basis for all efficient optimization methods. The most famous one is the Gauss-
Newton method which is described in Section 3 together with some of its variants. A
special one based on a transformation into a general constrained optimization problem
and subsequent solution by a sequential quadratic programming (SQP) method is shown
in Section 4. Section 5 contains list of the Mathcad worksheet files and some further
details about problem structure, practical background, and references. A detailed example
is shown in Section 6 to illustrate the implementation of a least squares data fitting
problem in Mathcad. An appendix contains a list of individual numerical results including
final residual values, number of function calls, and number of iterations until successful
termination, which have been obtained by the code DFNLP [38].

2 Optimality Conditions

The goal is to minimize the sum of squares of distances of a certain model function
from experimental measurement values. However, we are not able to exploit this specific
structure mathematically. Instead, we write the parameter estimation problem in the
form of a least squares problem, where a sum of squared nonlinear functions is to be
minimized,

min 1
2

∑l
i=1 fi(p)

2

p ∈ IRn .
(3)

These problems possess a long history in mathematical programming and are extremely
important in practice, particularly in nonlinear data fitting or maximum likelihood es-
timation. In consequence, a large number of mathematical algorithms is available for
solving (3). To understand their basic features, we introduce the notation

F (p) = (f1(p), . . . , fl(p))
T

for the objective function vector, and let f(p) = 1
2

∑l
i=1 fi(p)

2. Then

∇f(p) = ∇F (p)F (p) (4)

defines the Jacobian of the objective function with

∇F (p) = (∇f1(p), . . . ,∇fl(p)) .
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If we assume now that all functions f1, . . ., fl are twice continuously differentiable, we get
the Hessian matrix of f

∇2f(p) = ∇F (p)∇F (p)T +B(p) , (5)

where

B(p) =
l∑

i=1

fi(p)∇2fi(p) . (6)

Then we derive the following necessary optimality criteria.

Theorem 2.1 Let f be twice continuously differentiable, and p� a local solution of the
least squares problem (3). Then

a) ∇F (p�)F (p�) = 0 ,

b) ∇F (p�)∇F (p�)T +B(p�) is positive semi-definite.

For a parameter estimation problem with an ideal fit where model function values
coincide with experimental data, we get fi(p

�) = 0 and condition a) trivially holds. In
this case, condition b) is equivalent to the requirement that ∇F (p�) possesses full rank.
In a very similar way, a sufficient optimality condition can be formulated.

The notation and the optimality condition is to be motivated by an example that was
frequently used in the past to test unconstrained minimization algorithms and that is
known under the name banana function, see Rosenbrock [35] or Schittkowski [37].

Example 2.1 We want to minimize the sum of squares of two functions of the form

f(p1, p2) = 100(p2 − p1
2)2 + (1− p1)

2 =
1

2

(
200(p2 − p1

2)2 + 2(1− p1)
2
)

where
F (p1, p2) =

√
2
(
10(p2 − p1

2), 1− p1

)T
,

see Figure 2 for a surface plot. It is easy to see that p� = (1, 1)T is the unique optimal
solution of the least squares problem. With the notation introduced above, the optimality
condition

∇f(p�
1, p

�
2) = ∇F (p�

1, p
�
2)F (p�

1, p
�
2)

= 2

( −200p�
1(p

�
2 − p�

1
2) + p�

1 − 1

100(p�
2 − p�

1
2)

)

= 0
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is satisfied and the matrix

∇2f(p�
1, p

�
2) = ∇F (p�

1, p
�
2)∇F (p�

1, p
�
2)

T +B(p�
1, p

�
2)

= 2

(
600p�

1
2 − 200p�

2 + 1 −200p�
1

−200p�
1 100

)

= 2

(
401 −200

−200 100

)

is positive definite.

Banana Function
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Figure 2: Surface Plot

3 Gauss-Newton and Related Methods

Proceeding from a given iterate pk, Newton’s method can be applied to (3) to get a search
direction dk ∈ IRn by solving the linear system

∇2f(pk)d+∇f(pk) = 0

or, alternatively,

∇F (pk)∇F (pk)
Td+B(pk)d+∇F (pk)F (pk) = 0 . (7)
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Assume that
F (p�) = (f1(p

�), . . . , fl(p
�))T = 0

at an optimal solution p�. Then we neglect matrix B(pk) in (7), see also (6), and (7)
defines the so-called normal equations of the linear least squares problem

min ‖∇F (pk)
Td+ F (pk)‖

d ∈ IRn .
(8)

A new iterate is obtained by pk+1 = pk +αkdk, where dk is a solution of (8) and where αk

denotes a suitable steplength parameter. It is obvious that a quadratic convergence rate
is achieved when starting sufficiently close to an optimal solution. The above calculation
of a search direction is known as the Gauss-Newton method and represents the traditional
way to solve nonlinear least squares problems, see Björck [3] for more details.

In general, the Gauss-Newton method possesses the attractive feature that it converges
quadratically although we do not provide any second order information. A typical theorem
that is found in any textbook about numerical analysis can be formulated in the following
way.

Theorem 3.1 Assume that the unconstrained least squares problem (3) has an optimal
solution p� with F (p�) = 0, and that the Jacobian matrix of F possesses full rank and is
Lipschitz continuous in a neighborhood of p�. If the starting point p0 of the Gauss-Newton
method is sufficiently close to p�, then the iterates pk with steplength αk = 1 converge
quadratically to p�, i.e., there is a positive constant γ with

‖pk+1 − p�‖ ≤ γ ‖pk − p�‖2

for all k.

Lipschitz continuity of the Jacobian matrix of F is a bit stronger than usual continuity
and is defined by

‖∇F (p)−∇F (q)‖ ≤ L ‖p− q‖
for all p and q in a neighborhood of p�, where L is a suitable constant.

Example 3.1 The test example is the banana function of Rosenbrock that is also con-
sidered in the previous section, where we minimize

f(p1, p2) = 100(p2 − p1
2)2 + (1− p1)

2 .

To perform a Gauss-Newton step, we have to solve the following system of linear equations,
the so-called normal equations, where p1 and p2 denote the actual iterate,(

400p1
2 + 1 −200p1

−200p1 100

)(
d1

d2

)
+

( −200p1(p2 − p1
2) + p1 − 1

100(p2 − p1
2)

)
= 0 .
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Now assume that p = (0, 0)T is the initial iterate of the Gauss-Newton algorithm. Then
d = (1, 0)T is solution of the above system, i.e., of

(
1 0
0 100

)(
d1

d2

)
+

( −1
0

)
= 0 .

The next iterate is

p = p+ d =

(
1
0

)
.

We have to solve again the normal equations

(
401 −200p1

−200 100

)(
d1

d2

)
+

(
200

−100

)
= 0

from which we get d = (0, 1)T and the second iterate

p� = p+ d =

(
1
1

)
.

We get exactly the optimal solution in only two steps, an accidental situation.

However, the assumptions of the convergence theorem of Gauss-Newton methods are
very strong and cannot be satisfied in real situations. We have to expect difficulties in
case of non-zero residuals, rank-deficient Jacobian matrices, non-continuous derivatives,
and starting points far away from a solution.

Further difficulties arise when trying to solve large residual problems, where F (p�)TF (p�)
is not sufficiently small, for example relative to ‖∇F (p�)‖. Numerous proposals have been
made in the past to deal with this situation, and it is outside the scope of this chapter to
give a review of all possible attempts developed in the last 30 years. Only a few remarks
are presented to illustrate basic features of the main approaches, for further reviews see
Gill, Murray and Wright [12], Ramsin and Wedin [31], or Dennis [7].

A very popular method is known under the name Levenberg-Marquardt algorithm,
see Levenberg [22] and Marquardt [25]. The key idea is to replace the Hessian in (7) by
a multiple of the identity matrix, say λkI, with a suitable positive factor λk. We get a
uniquely solvable system of linear equations of the form

∇F (pk)∇F (pk)
Td+ λkd+∇F (pk)F (pk) = 0 .

For the choice of λk and the relationship to so-called trust region methods, see Moré [26].
A more sophisticated idea is to replace B(pk) in (7) by a quasi-Newton-matrix Bk, see

Dennis [6]. But some additional safeguards are necessary to deal with indefinite matrices
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∇F (pk)∇F (pk)
T+Bk in order to get a descent direction. A modified algorithm is proposed

by Gill and Murray [11], where Bk is either a second-order approximation of B(pk), or
a quasi-Newton matrix. In this case, a diagonal matrix is added, ∇F (pk)∇F (pk)

T + Bk,
to obtain a positive definite matrix. Lindström [23] proposes a combination of a Gauss-
Newton and a Newton method by using a certain subspace minimization technique.

If, however, the residuals are too large, there is no possibility to exploit the spe-
cial structure and a general unconstrained minimization algorithm, for example a quasi-
Newton method, can be applied as well.

4 Least Squares Minimization by SQP Methods

Many efficient special purpose computer programs are available to solve unconstrained
nonlinear least squares problems. On the other hand, there exists a very simple approach
to combine the valuable properties of Gauss-Newton methods with that of SQP algorithms
in a straightforward way with almost no additional efforts.

We proceed from an unconstrained least squares problem in the form

min 1
2

∑l
i=1 fi(p)

2

p ∈ IRn ,
(9)

see also (3). Since most nonlinear least squares problems are ill-conditioned, it is not
recommended to solve (9) directly by a general nonlinear programming method. But
we will see in this section that a simple transformation of the original problem and its
subsequent solution by a SQP method retains typical features of a special purpose code
and prevents the need to take care of negative eigenvalues of an approximated Hessian
matrix as in the case of alternative approaches. The corresponding computer program
can be implemented in a few lines provided that a SQP algorithm is available.

The transformation, also described in Schittkowski [38], consists of introducing l ad-
ditional variables z = (z1, . . . , zl)

T and l additional equality constraints of the form

fi(p)− zi = 0 , i = 1, . . . , l . (10)

Then the equivalent transformed problem is

(p, z) ∈ IRn+l :
min 1

2
zT z

F (p)− z = 0 ,
(11)

F (p) = (f1(p), . . ., fl(p))
T . We consider now (11) as a general nonlinear programming

problem of the form

p̄ ∈ IRn̄ :
min f̄(p̄)

ḡ(p̄) = 0
(12)
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with n̄ = n + l, p̄ = (p, z), f̄(p, z) = 1
2
zT z, ḡ(p, z) = F (p) − z, and apply a sequential

quadratic programming (SQP) method as for example described in Spellucci [48]. Se-
quential quadratic programming methods are the standard general purpose algorithms
for solving smooth nonlinear optimization problems and are widely used for solving prac-
tical optimization problems. The key idea is to approximate also second order information
to get a fast final convergence speed. Thus, we define a quadratic approximation of the La-
grangian function and an approximation of its Hessian matrix by a quasi-Newton matrix
B̄k. The quadratic programming subproblem is

d̄ ∈ IRn̄ :
min 1

2
d̄T B̄kd̄+∇f̄(p̄k)

T d̄

∇ḡ(p̄k)
T d̄+ ḡ(p̄k) = 0 ,

(13)

where a bar is used to avoid confusion with the notation of the previous section. In (13),
p̄k = (pk, zk) is a given iterate and

B̄k =

(
Bk : Ck

CT
k : Dk

)
(14)

with Bk ∈ IRn×n, Ck ∈ IRn×l, and Dk ∈ IRl×l, a given approximation of the Hessian of
the Lagrangian function L(p̄, u) defined by

L(p̄, u) = f̄(p̄)− uT ḡ(p̄)

= 1
2
zT z − uT (F (p)− z) .

Since

∇p̄L(p̄, u) =

( −∇F (p)u
z + u

)

and

∇2
p̄L(p̄, u) =

(
B(p, u) : 0

0 : I

)

with

B(p, u) = −
l∑

i=1

ui∇2fi(p) , (15)

it seems to be reasonable to proceed now from a quasi-Newton matrix given by

B̄k =

(
Bk : 0
0 : I

)
, (16)

where Bk ∈ IRn×n is a suitable positive definite approximation of B(pk, uk). Insertion of
this B̄k into (13) leads to the equivalent quadratic programming subproblem

(d, e) ∈ IRn+l :
min 1

2
dTBkd+ 1

2
eT e+ zT

k e

∇F (pk)
Td− e+ F (pk)− zk = 0 ,

(17)
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where we replace d̄ by (d, e). Some simple calculations show that the solution of the above
quadratic programming problem is identified by the linear system

∇F (pk)∇F (pk)
Td+Bkd+∇F (pk)F (pk) = 0 . (18)

This equation is identical to (7), if Bk = B(pk), and we obtain the following theorem.

Theorem 4.1 Assume that for a given iterate pk ∈ IRn, an SQP step is performed with
Bk = B(pk), B(p) defined by (6) and B̄k decomposed in the form (16). Then we obtain a
Newton direction for solving the unconstrained least squares problem (9).

Note that B(p) defined by (6) and B(p) defined by (15) coincide at an optimal solution
of the least squares problem, since F (pk)+ zk = −uk. Based on the above considerations,
an SQP method can be applied to solve (11) directly. The quasi-Newton-matrices B̄k are
always positive definite, and consequently also the matrix Bk defined by (14). Therefore,
we omit numerical difficulties imposed by negative eigenvalues as found in the usual
approaches for solving least squares problems.

When starting the SQP method, one could proceed from a user-provided initial guess
p0 for the variables and define

z0 = F (p0) ,

B0 =

(
µI : 0
0 : I

)
,

(19)

guaranteeing a feasible starting point p̄0. The choice of B0 is of the form (16) and allows
a user to provide some information on the estimated size of the residuals, if available. If
it is known that the final norm F (p�)TF (p�) is close to zero at the optimal solution p�,
the user could choose a small µ in (19). At least in the first iterates, the search directions
are similar to a Gauss-Newton direction. Otherwise, a user could define µ = 1, if a large
residual is expected.

Example 4.1 We consider again the banana function

f(p1, p2) = 100(p2 − p1
2)2 + (1− p1)

2 .

When applying the nonlinear programming code NLPQL of Schittkowski [36], an imple-
mentation of a general purpose SQP method, we get the iterates of Table 2 starting at
p0 = (−1.2, 1.0)T . The last column contains an internal stopping condition based on the
optimality criterion, in our unconstrained case equal to

|∇f(pk)B
−1
k ∇f(pk)|
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with a quasi-Newton matrix Bk. We observe a very fast final convergence speed, but
a relatively large number of iterations. If we omit now the factor 1

2
for simplicity, the

equivalent constrained nonlinear programming problem is

p1, p2, z1, z2 :

min z1
2 + z2

2

10(p2 − p1
2)− z1 = 0 ,

1− p1 − z2 = 0 .

When using now the same algorithm NLPQL, we get the results of Table 3. In this case,
the last column contains the stopping condition based on Theorem 2.1. Obviously, the
convergence speed is much faster.

Table 2: NLP Formulation of Banana Function

k f(pk) s(pk) k f(pk) s(pk)
0 24.20 0.54 · 105 29 0.15 · 10−2 0.18 · 10−2

1 12.21 0.12 · 103 30 0.39 · 10−3 0.57 · 10−3

2 2.547 0.19 · 101 31 0.36 · 10−4 0.62 · 10−4

3 2.391 0.57 · 10−1 32 0.13 · 10−5 0.26 · 10−5

4 2.346 0.86 · 10−1 33 0.11 · 10−7 0.24 · 10−7

5 1.942 0.23 · 10−1 34 0.75 · 10−10 0.15 · 10−9

. . . . . . . . . 35 0.15 · 10−15 0.31 · 10−15

Table 3: Least Squares Formulation of Banana Function

k f(pk) s(pk) k f(pk) s(pk)
0 24.20 0.82 · 102 6 0.32 · 10−4 0.61 · 10−4

1 22.21 0.41 · 102 7 0.29 · 10−6 0.57 · 10−6

2 5.120 0.11 · 101 8 0.37 · 10−9 0.73 · 10−9

3 0.42 · 10−1 0.74 · 10−1 9 0.42 · 10−13 0.84 · 10−13

4 0.12 · 10−1 0.17 · 10−1 10 0.28 · 10−17 0.56 · 10−17

5 0.17 · 10−2 0.31 · 10−2
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5 The Test Problems

The subsequent table contains a list of all test problems together with the number of
parameters to be estimated np, the number of experimental data nd, a brief description
of the practical or mathematical background, and some references. The model equations
have first been implemented in the modelling language PCOMP, see Dobmann et al. [9] or
Schittkowski [39, 40, 41]. The transformation into Mathcad worksheets follows a unified
format based on the PCOMP equations. Thus, the implementations do not exploit all
possible features of Mathcad to get the most elegant and compact description. All mcd-
files can be downloaded from the home page of the author4.

Data Fitting Problems

name np nd background ref
2VALLEYS 2 4 Academic test problem with two local minima [47]
APPRX3 6 10 Rational approximation of data [2]
ATROP EX 4 24 Atropin-chase binding, linear model
BENNETT5 3 154 Superconductivity magnetization modeling (NIST study)
BOXBOD 2 6 Biochemical oxygen demand (NIST study) [4]
CAT SEP 5 5 Catalysator separation problem
CHWIRUT1 3 215 Ultrasonic reference block (NIST study)
CHWIRUT2 3 54 Ultrasonic reference block (NIST study)
DANWOOD 2 6 Energy radiated from a carbon filament lamp (NIST study) [5]
DFE1 8 9 Explicit test function with local solutions, cycling model

function etc.
DOAS 21 100 Differential optical spectral absorption
E FIT 3 12 Rational-exponential data fitting
ECKERLE4 3 35 Circular interference transmittance (NIST study)
ELA TUBX 3 40 Waves propagating in a liquid-filled elastic tube (KDVB

equation)
[17], [50]

ENZREAC 4 13 Enzyme reaction, rational approximation
EW WAVEX 2 48 Wave propagation in media with nonlinear steepening and

dispersion
[13]

(continued)

4http://www.klaus-schittkowski.de
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name np nd background ref
EXP FIT1 2 28 Exponential data fitting
EXP FIT2 7 33 Exponential data fitting
EXP FIT3 2 27 Exponential data fitting
EXP FIT4 5 19 Exponential data fitting
EXP FIT6 2 4 Exponential data fitting
EXP SMPL 2 81 Single term exponential model, large errors in data
EXP2TERM 5 20 Two-exponential model
GAMMAS 7 27 Analysis of a gamma spectrum
GAUSS1 8 250 Two well-separated Gaussians (NIST study)
GAUSS2 8 250 Two slightly-blended Gaussians (NIST study)
GAUSS3 8 250 Two strongly-blended Gaussians (NIST study)
GLU RATE 4 13 In-vivo glucose turnover rate
HAHN1 7 236 Thermal expansion of copper (NIST study)
HEAT XX 2 99 Linear diffusion with constant parameters, exact solution
ILL COND 100 100 Ill-conditioned test function, many parameters
INFINITE 3 21 Infinitely many solutions
INTEG X 3 25 Population dynamics [30]
KIRBY2 5 151 Scanning electron microscope (NIST study)
LANCZOS1 6 24 Exponential nonlinear regression (NIST study) [21]
LANCZOS2 6 24 Exponential nonlinear regression (NIST study) [21]
LANCZOS3 6 24 Exponential nonlinear regression (NIST study) [21]
LIN HC X 3 165 Linear heat conduction [1]
MAC ECO 6 186 Macroeconomic time series of currency notes in circulation [49]
MARKET 7 100 Dynamic economic market
MGH09 4 11 Rational nonlinear regression (NIST study) [27]
MGH10 3 16 Exponential nonlinear regression (NIST study) [27]
MGH17 5 33 Exponential nonlinear regression (NIST study) [27], [29]
MICHMENT 2 12 Michaelis-Menten kinetics [47], [52]
MISRA1A 2 14 Monomolecular adsorption (NIST study)
MISRA1B 2 14 Monomolecular adsorption (NIST study)
MISRA1C 2 14 Monomolecular adsorption (NIST study)
MISRA1D 2 14 Monomolecular adsorption (NIST study)
MIX PAT2 3 33 Mixing pattern inside a polymerization reactor
MIX PAT3 1 27 Mixing pattern inside a polymerization reactor
MIX PAT4 3 28 Mixing pattern inside a polymerization reactor

(continued)
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name np nd background ref
MONOD 4 10 Monod-Wymnan-Changeux kinetic equation [47], [33]
MORTALTY 2 9 Mortality rate by Gompertz function [15]
NELSON 3 128 Analysis of performance degradation data (NIST study) [28]
OSCILL S 16 50 Oscillating system with exact known solution [53]
OSCILL X 16 50 Oscillating system [53]
PARID15 3 16 Parameter identification model, 15 normally distributed ex-

perimental values
PARID30 3 31 Parameter identification model, 30 normally distributed ex-

perimental values
PARID60 3 61 Parameter identification model, 60 normally distributed ex-

perimental values
PARID120 3 121 Parameter identification model, 120 normally distributed

experimental values
RAD TRAC 3 8 Radioactive tracer in two human body compartments
RAMAN 2 101 Raman intensity of anisotrope probes [20]
RAT42 3 9 Pasture yield with sigmoidal growth curve (NIST study) [32]
RAT43 4 15 Dry weight of onion bulbs and tops (NIST study) [32]
RAT APP 4 11 Rational approximation with constraints [24]
RAT FIT 4 11 Fitting a rational function [18]
RICH GR 3 9 Richards growth model [34]
ROSZMAN1 4 25 Quantum defects in iodine atoms (NIST study)
RTD 2 36 Residence time distribution
SMOOTHNG 3 500 Data smoothing
STEP RES 3 22 Second-order equation with dead time and step response

data
[51]

SULFATE 4 9 Compartmental analysis in humans with radioactive sulfate
as tracer

[47]

THERMRES 3 10 Thermistor resistance, exponential data fitting
THURBER 7 37 Semiconductor electron mobility (NIST study)
TIME ACT 2 9 Time activities
TP25 3 99 Academic test problem, highly unstable [14]
TP203 2 3 Simple data fitting problem [37]
TP205 2 3 Least squares problem with three terms [37]
TP242 3 10 Exponential test function [37]
TP244 3 10 Exponential test function [37]
TP267 5 11 Exponential test function [37]

(continued)
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name np nd background ref
TP272 6 13 Exponential test function [37]
TP307 2 10 Exponential data fitting [37]
TP327 2 45 Constrained exponential data fitting [37]
TP333 3 8 Exponential data fitting [37]
TP334 3 15 Exponential data fitting [37]
TP350 4 6 Rational approximation [37]
TP358 5 20 Exponential data fitting test function [37]
TP379 11 65 Test problem of Osborne, four exponential terms [37], [29]
TREND 6 501 Trend curve
TRIG APP 2 19 Trigonometric approximation for computing axial forces
TUBTANK 1 19 Comparison of tank and tubular reactors steady state [16]
VAPOR 2 11 Vapor-liquid equilibrium [10]
VISC ELA 10 24 Memory function of visco-elastic substances
WEIBULL 2 14 Weibull distribution

6 A Mathcad Worksheet Example

Mathcad5 is an interactive GUI with a large number of built-in mathematical functions.
Special commands allow to solve also constrained nonlinear programming problems. The
subsequent lines describe the usage of these functions and are taken from the Mathcad
documentation:

Least Squares Data Fitting

LeastSquaresFit(vx, vy, F, guess, conf, [Stdy], [LBUB], [Acc])

Takes real vectors vx and vy of identical length, a fitting function F(x,b) of one variable
with an arbitrary number of parameters, b, a guess vector with one guess value for each
parameter, the desired confidence limit conf, a percentage between 0 and 1, inclusive.
An additional optional vector of standard deviations, Stdy, the same length as vy, an
optional two-column matrix of lower and upper bounds on the parameters, LBUB, with
the same number of rows as guess; and an optional convergence accuracy Acc, may be
specified. Returns a three column matrix, where the first column contains the values
for the fitted parameters, and the second and third columns contain the left and right
boundaries, respectively, for the confidence interval.

Notes:

• Number of parameters cannot exceed length of vx.

5http://www.mathcad.com
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• Define the function F before using it in LeastSquaresFit. It is possible to specify
the function F(x,b) with b as a vector, or with a series of scalar variables in the
function’s argument list.

• When specifying the function in LeastSquaresFit, use only the function name, not
its arguments.

• If you are using more than one of the optional arguments, they must be specified in
their relative order shown above.

• The default value for Acc is 10−7.

Example 6.1 To give an impression how a test problem is implemented, we consider the
rational data fitting example 1.1, where we want to fit the parameters b1, . . ., b4, so that
the data of Table 1 are approximated by the rational function

F (x, b) = b1
x2 + b2x

x2 + b3x+ b4

,

see Lindström [24] and Deuflhard, Apostolescu [8]. Subsequently, the Mathcad implemen-
tation is listed, see Figure 3. The mcd-files contain not only data and functions which
describe the optimization problem, but also the computed solution together with confidence
intervals and the final residual, see Figure 4.
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Figure 3: Mathcad Declarations
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Figure 4: Mathcad Results
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APPENDIX: Individual Results

To show how efficiently these problems can be solved, we present some numerical per-
formance data, i.e., number of function calls, number of iterations, and final residuals.
With the default tolerances given, all problems can be solved successfully by the code
DFNLP [36]. Derivatives are computed by a five-point-difference formula and termina-
tion tolerance is set to 10−7. More details about the test environment and evaluation
of successful returns are found in [40]. The subsequent table contains a list of all test
problems with the data

name test problem number,
nf number of objective function evaluations,
ng number of gradient evaluations of objective function,
residual final residual.

name nf ng residual
2VALLEYS 10 9 .934
APPRX3 21 21 .00538
ATROP EX 29 26 .00405
BENNETT5 17 13 .000524
BOXBOD 10 10 1170
CAT SEP 88 52 .00204
CHWIRUT1 11 9 2380
CHWIRUT2 16 10 513

(continued)
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name nf ng residual
DANWOOD 6 6 .00432
DFE1 12 12 .00853
DOAS 27 24 .000356
E FIT 64 39 2.59
ECKERLE4 68 46 .00146
ELA TUBX 44 27 .000853
ENZREAC 40 32 .0000192
EW WAVEX 23 20 .000318
EXP FIT1 21 16 .00182
EXP FIT2 36 19 .0000105
EXP FIT3 74 47 .0253
EXP FIT4 18 18 .000243
EXP FIT6 29 19 6.49E-06
EXP SMPL 0 0 2
EXP2TERM 46 30 2.01
GAMMAS 36 31 .000794
GAUSS1 7 7 1320
GAUSS2 9 9 1250
GAUSS3 9 9 1240
GLU RATE 18 18 6.22E-07
HAHN1 45 29 .0000276
HEAT XX 92 50 4.24E-19
ILL COND 2 2 1.17E-22
INFINITE 18 18 4.29E-16
INTEG X 10 10 .000424
KIRBY2 8 8 7.97E-06
LANCZOS1 143 78 6.17E-23
LANCZOS2 120 73 1.23E-12
LANCZOS3 125 67 8.36E-10
LIN HC X 34 29 .000945
MAC ECO 123 70 .000102
MARKET 10 10 2.39E-06
MGH09 410 175 .00207
MGH10 83 47 2.26E-08

(continued)
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name nf ng residual
MGH17 28 22 3.83E-06
MICHMENT 8 8 .0195
MISRA1A 26 18 3.77E-06
MISRA1B 45 27 2.28E-06
MISRA1C 10 9 1.24E-06
MISRA1D 7 7 1.71E-06
MIX PAT2 31 30 .012
MIX PAT3 13 13 .0000412
MIX PAT4 16 16 .00693
MONOD 23 16 .808
MORTALTY 12 12 .00617
NELSON 78 51 .0154
OSCILL S 113 88 2.35E-21
OSCILL X 47 45 .000624
PARID15 19 16 .00286
PARID30 0 1 .00511
PARID60 26 17 .0471
PARID120 22 15 .073
RAD TRAC 60 39 .0125
RAMAN 10 9 .00235
RAT APP 10 9 .000413
RAT FIT 43 37 .000307
RAT42 12 11 .000442
RAT43 72 57 .00233
RICH GR 53 37 .00132
ROSZMAN1 6 6 .000104
RTD 19 19 .0000151
SMOOTHNG 32 32 .000167
STEP RES 24 17 .919
SULFATE 14 14 .00594
THERMRES 24 24 .0035
THURBER 41 38 .000413
TIME ACT 69 43 .00107
TP25 78 48 6.22E-21

(continued)
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name nf ng residual
TP203 7 7 1.12E-16
TP205 8 8 2.34E-15
TP212 4 4 7.26E-19
TP242 11 11 2.88E-15
TP244 9 9 1.62E-14
TP267 26 25 1.95E-17
TP272 51 34 1.16E-10
TP307 12 12 124
TP327 9 9 .0285
TP333 9 9 .0433
TP334 8 8 .0538
TP350 24 24 .000245
TP358 5 5 .0000408
TP379 33 23 .0401
TREND 19 14 .0000386
TRIG APP 7 7 .011
TUBTANK 4 4 .0118
VAPOR 9 9 .0000547
VISC ELA 17 10 .0978
WEIBULL 9 9 .00101
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