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Abstract

The purpose of the paper is to introduce a set of Mathcad worksheets contain-
ing partial differential algebraic equations (PDAEs). They can be used to become
familiar with Mathcad implementation of PDAEs and with the behavior of dynam-
ical systems in general. The problems are taken from a collection of test examples
for data fitting in dynamical systems, see Schittkowski [24]. The report contains
a summary of 17 partial differential algebraic equations that have been transferred
to Mathcad and a detailed example. All worksheets can be downloaded from the
home page of the author2. A particular advantage of executing these problems from
Mathcad is the possibility to plot corresponding solutions very easily.

1 c©2003 Mathsoft Engineering & Education Inc.
2http://www.klaus-schittkowski.de
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1 Introduction

Partial differential algebraic equations (PDAEs) are based on the same model structure as
one-dimensional, time-dependent partial differential equations. The only difference is that
additional algebraic equations are permitted as in the case of DAEs. Typical examples
are higher order partial differential equations, for example

ut = f(u, uxxxx, x, t) ,

transformed into a second-order equation by introducing an additional variable w,

ut = f(u,wxx, x, t) ,

0 = w − uxx .

Also, distributed parameter systems of the form

ut = f1(u, v, x, t) ,

vx = f2(u, v, x, t)

with initial values u(x, 0) = u0(x) , v(0, t) = v0(t) are transformed into the PDAEs

ut = f1(u, v, x, t) ,

0 = vx − f2(u, v, x, t)

or
vx = f2(u, v, x, t) ,

0 = ux − f1(u, v, x, t) ,

respectively.
Thus, we proceed again from a spatial integration interval [xL, xR], a time interval

[0, T ], and consider the general system

udt = Fd(u, ux, uxx, x, t) ,

0 = Fa(u, ux, uxx, x, t) ,
(1)

where x ∈ IR is the spatial variable with xL ≤ x ≤ xR, and t ∈ IR the time variable
with 0 < t ≤ T . The np state variables u are divided into nd differential variables
and na algebraic variables, u = (ud, ua)

T , where the number of algebraic variables is
identical to the number of algebraic equations defined by the vector-valued function Fa

and np = nd + na.

2



Initial values are given for all variables,

u(x, 0) = u0(x) , (2)

where we assume again that the integration is to be performed over a time interval of
the form [0, T ] with a sufficiently large bound T . u0(x) is a given function defined on the
integration area [xL, xR].

As in case of time-dependent differential equations only, classical boundary conditions
are either of Dirichlet type

u(xL, t) = uL(t) ,

u(xR, t) = uR(t) ,
(3)

with given functions uL(t) and uR(t) defined on the whole time interval (0, T ], or of
Neumann type

ux(xL, t) = ûL(t) ,

ux(xR, t) = ûR(t) ,
(4)

where derivative or flux functions ûL(t) and ûL(t) are known for all t ∈ (0, T ]. We have
the option to fix either the function values of the solution or its spatial derivatives, to mix
both conditions, or to omit one or another boundary condition completely.

The number and order of boundary conditions depends on the model structure, for
example whether F depends on uxx or not, in order to get a uniquely defined solution. As
a rule of thumb, the total number of scalar boundary conditions should coincide with the
number of all partial differentiations, where the highest order of spatial differentiation is
counted for each state variable. Boundary and initial conditions are called inconsistent,
if they do not fit continuously at connecting points, for instance if uL(0) �= u0(xL) in case
of a left Dirichlet boundary condition.

However, we must treat initial values with more care, since the situation is a bit
more complex than in the case of ordinary differential algebraic equations. We have to
guarantee that they satisfy the na algebraic equations

0 = Fa(u(x, 0), ux(x, 0), uxx(x, 0), x, 0) (5)

for all x. But if the right-hand side depends also on some components of ux or uxx, re-
spectively, it is in general not possible to eliminate the algebraic variables and to compute
consistent initial values by hand.

There are some attempts to define the index of partial differential algebraic equations
in a way similar to ordinary differential equations. However, an exact definition for general
nonlinear equations is somewhat cumbersome, see for example Martinson and Barton [13].
On the other hand, indices for linear or semilinear systems are discussed in several papers,
see Campbell and Marszalek [2] or Lucht and Strehmel [12].

3



Heat Equation

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

T (x, t)

x

t

Figure 1: Solution of Heat Equation

Example 1.1 We consider again the heat equation also discussed in Schittkowski [30],
now formulated in the form of a system of two first-order differential algebraic equations

Tt = D Sx ,

0 = Tx − S
(6)

with a thermal diffusion constant D > 0. The spatial variable x varies from 0 to L, and
for the time variable we require t > 0. Initial heat distribution is T (x, 0) = sin(xπ/L) for
all x ∈ (0, L), and Dirichlet boundary conditions T (0, t) = T (L, t) = 0 are given for all
t ≥ 0. We know that

T (x, t) = e−tπ2/L2

sin(xπ/L)

is a solution of the parabolic PDE. If we set L = 1 and D = 1, we get the heat distribution
shown in Figure 1.

The report is one out of a series of Mathcad test problem collections by which numer-
ical routines are tested and the implementation of optimization problems and dynamical
systems is outlined, i.e.,

1. nonlinear programming [26],

2. data fitting [27],

3. ordinary differential equations [28],
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4. differential algebraic equations [29],

5. partial differential equations [30],

Section 2 contains a brief outline of the method of lines by which a PDAE is trans-
formed into a system of ordinary differential algebraic equations (DAEs). Subsequently,
an implicit integration routine is used to integrate these equations. This basic idea is im-
plemented in the routine Pdesolve in Mathcad, which is used for all test cases. A simple
example is shown in Section 3 to illustrate the numerical solution of a partial differential
equation. A list of the Mathcad worksheet files and some further details about problem
structure, background, and source is given in Section 4.

2 The Method of Lines

The underlying idea is to transform the partial differential equations into a system of ordi-
nary differential equations by discretizing the model functions with respect to the spatial
variable x. This approach is known as the method of lines, see for example Schiesser [19]
or Schittkowski [24]. The method of lines is also briefly outlined in a related report about
Mathcad worksheets for partial differential equations, see Schittkowski [30].

Algebraic equations of the form

0 = Fa(u, ux, uxx, x, t) (7)

are discretized in the same way as the time-dependent ones, leading to a system of nan
algebraic equations of the form

0 = Fa(ui(t), d
1
i (u, t, h), d2

i (u, t, h), xi, t) , (8)

i = 1, . . ., n, where d1
i (u, t, h) and d2

i (u, t, h) represent suitable approximations of first
and second spatial derivatives.

In the discretized problem, we are also able to distinguish explicitly between the
differential and algebraic variables, ui(t) = (ud

i (t), u
a
i (t)), where ud

i (x, t) denotes the nd

differential variables and ua
i (t) the na algebraic ones, i = 1, . . ., n. The result is a

system of nnp = n(nd + na) ordinary differential algebraic equations, that we can solve
by any available DAE solver, for example the implicit Radau-type method of Hairer and
Wanner [5].

But without knowing all details of these spatial approximations, it is more or less
impossible to provide the DAE solver with consistent initial values. Thus, they must be
computed in advance by Newton’s method. Consequently, we allow only index-1-systems
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of the discretized DAE unless it is guaranteed that consistent initial values are available.
More precisely, we have to solve a system of nan equations

0 = Fa(u
0
i , d

1
i (u0, 0, h), d

2
i (u0, 0, h), xi, 0) , (9)

where u0 = (u0
1, . . . , u

0
n)

T and u0
i = (ud0

i , ua0
i ) for i = 1, . . ., n with given initial values

ud0
i for the differential variables. The unknown algebraic variables ua0

i are computed by
Newton’s method starting from given initial values, more precisely, by the code NLPQL
of Schittkowski [21].

Example 2.1 We consider the heat equation, which is also discussed in Example 6. A
very simple approximation by symmetric differences of the equations

Tt = D Sx ,

0 = Tx − S

with n = 5 lines leads to a system of ten differential algebraic equations with index 1,

Ṫ1(t) =
D

2h
(−S3(t) + 4S2(t)− 3S1(t)) , 0 =

1

2h
(−T3(t) + 4T2(t))− S1(t) ,

Ṫ2(t) =
D

2h
(S3(t)− S1(t)) , 0 =

1

2h
T3(t)− S2(t) ,

Ṫ3(t) =
D

2h
(S4(t)− S2(t)) , 0 =

1

2h
(T4(t)− T2(t))− S3(t) ,

Ṫ4(t) =
D

2h
(S5(t)− S3(t)) , 0 =

1

2h
(−T3(t))− S4(t) ,

Ṫ5(t) =
D

2h
(3S5(t)− 4S4(t) + S3(t)) , 0 =

1

2h
(−4T4(t) + T3(t))− S5(t) .

Dirichlet boundary conditions define T1(t) = 0 and T5(t) = 0. Thus, we can omit the
differential equations for Ṫ1(t) and Ṫ5(t), and the algebraic equations are somewhat sim-
plified. Initial values are Ti(0) = sin(xiπ) for i = 2, . . ., 4. Consistent initial values for
Si(t) are easily computed from the last five equations

S1(0) =
1

2h
(−T3(0) + 4T2(0)) =

1

2h
(− sin(x3π) + 4 sin(x2π)) ,

S2(0) =
1

2h
T3(0) =

1

2h
sin(x3π) ,

S3(0) =
1

2h
(T4(0)− T2(0)) =

1

2h
(sin(x4π)− sin(x2π)) ,

S4(0) =
1

2h
(−T3(0)) = − 1

2h
sin(x3π) ,

S5(0) =
1

2h
(−4T4(0) + T3(0)) =

1

2h
(−4 sin(x4π) + sin(x3π)) .
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The above example, however, could have been formulated also as a time-dependent
PDE. In general, we do not make any assumptions about the number of differential or
algebraic equations in (1), i.e., the dimensions of Fd or Fa, respectively. It is possible that
the second set of equations vanishes completely leading to a system of time-dependent
partial differential equations, na = 0, or that the differential equations in (1) do not
appear at all, nd = 0. In the latter case, we get a system of algebraic equations, where
one or another coefficient may depend on the time variable. Thus, the resulting problem
is not necessarily a boundary value problem (BVP) and the solution can depend on the
time as shown by the subsequent fourth-order partial differential equation.

Example 2.2 Assume that the displacement of a beam is described by a fourth-order par-
tial differential equation without time-derivatives. After introducing an auxiliary variable
v, we get a second-order system of equations

0 = E vxx + w − l(t) ,

0 = wxx − v
(10)

with an elasticity parameter E > 0 and an external time-dependent load l(t) = 1 + t+ t2,
see Timoshenko and Goodier [31]. The spatial variable x varies from 0 to 3, and the time
variable t between 0 and 2. Boundary values are w(0) = w(3) = 0, wx(0) = wx(3) = 0 to
force the beam being fixed at both end points. The resulting displacement distribution is
shown in Figure 2.

3 A Mathcad Worksheet Example

Mathcad (http://www.mathcad.com) is an interactive GUI with a large number of built-
in mathematical functions. Special commands allow to solve systems of one-dimensional
partial differential equations. The subsequent lines describe the usage of Pdesolve for
solving PDAEs, see also the Mathcad documentation

The Pdesolve function is used within solve blocks, allowing for natural notation, and
are the easiest to use and interpret.

Pdesolve(u, x, xrange, t, trange, [xpts], [tpts])) returns a function or vector of functions
of x and t that solve a one-dimensional nonlinear PDAE or a system of PDAEs, see (1).
Values are interpolated from a matrix of solution points calculated using the numerical
method of lines.

Arguments:

• u is the explicit vector of function names (with no variable names included) precisely
as they appear within the solve block. This argument degenerates to a scalar in the
case of a single PDAE.
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Figure 2: Solution of a Fourth-Order Partial Differential Equation

• x is the spatial variable.

• xrange is a 2-element column vector containing the boundary values for x. Both
values must be real.

• t is the time variable.

• trange is a 2-element column vector containing the boundary values for t. Both
values must be real.

• xpts (optional) is the integer number of spatial discretization points.

• tpts (optional) is the integer number of temporal discretization points.

A solve block refers to a group of steps involved when solving a system of differential
equations. Needed are initial the key word Given, a set of equations, and the solving
function Pdesolve. Collectively, these steps are known as a solve block.

To give an impression how a test problem is implemented, we consider problem HEAT,
see Example 6 or Schittkowski [30] for an alternative Mathcad implementation. Subse-
quently, the Mathcad implementation is listed, see Figure 3.
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Figure 3: Mathcad Implementation: Heat Equation
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4 List of All Test Problems

The subsequent table contains a list of all test problems together with the number of dif-
ferential variables or equations nd, the number of algebraic variables or equations, na, a
brief description of the practical or mathematical background, and some references. The
differential equations have first been implemented in the modelling language PCOMP,
see Dobmann et al. [3] or Schittkowski [23, 24, 25]. The transformation into Mathcad
worksheets follows a unified format based on the PCOMP equations. Thus, the imple-
mentations do not exploit all possible features of Mathcad to get the most elegant and
compact description. All mcd-files can be downloaded from the home page of the author3.

Partial Differential Algebraic Equations

name nd na background ref
2ND DIR1 0 1 Second order Dirichlet problem [10]
2ND DIR2 0 1 Second order inhomogeneous Dirichlet problem [10]
ACCRET F 2 1 Thermal equilibrium curves in Keplerian accretion disks [17]
BEAM1 0 2 Curved beam [8], [31]
BVP TRIV 0 1 Boundary value problem with known solution [9]
CAPILL 0 1 Capillar filled with water under electric charge
CNT CUR2 2 1 Counter-current separation of fluid phase concentrations

with phase equilibrium
[15]

CTFLOW 2 2 Two incompressible counter-current flows of binary liquid
mixture with semi-permeable wall

[14]

ELA TUBE 1 1 Waves propagating in a liquid-filled elastic tube (Korteweg-
de Vries-Burgers equation)

[7]

ELDYN A 2 2 Electrodynamic application with algebraic equations [1]
EW WAVE 1 1 Wave propagation in media with nonlinear steepening and

dispersion
[6]

HEAT A 1 1 Heat equation, formulated with algebraic equation
KDVE 1 1 Shallow water flow, balancing front sharpening and disper-

sion to produce solitons
[20]

PAR SINA 1 1 Parabolic PDE with inhomogeneous sinus-term (with alge-
braic equation)

[18], [16]

(continued)

3http://www.klaus-schittkowski.de
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name nd na background ref
PDAE4 1 1 Simple fourth order PDAE with exact solution
PLASMA 2 2 Space-time movement of ions and electrons [11]
UNI BEAM 2 3 Thin uniform cantilevered beam [4]

Acknowledgement: The author would like to thank Angela Busse, Irina Hübner, Do-
minik Stadelmaier for for preparing the Mathcad worksheets.
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