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Abstract

The purpose of the paper is to introduce a set of nonlinear programming test
examples in form of Mathcad worksheets. The availability of nonlinear programming
test problems is an important assumption to develop and test optimization codes, to
learn how optimization routines behave, or to become familiar with implementation
and user interface. The problems are taken from the widely used collection of
Fortran subroutines of Hock and Schittkowski [33]. The report presents a summary
of 110 test examples that have been transferred to Mathcad, a detailed example,
and some numerical results. All worksheets can be downloaded from the home page
of the author. A particular advantage of executing these problems from Mathcad
is the possibility to plot corresponding objective function surfaces and constraint
contours very easily.
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1 Introduction

A couple of years ago, the author published two test problem collections for testing non-
linear programming codes, see Hock and Schittkowski [33] and Schittkowski [59]. The
Fortran source codes of all test problems are available through the link

http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm

The usage of the subroutines is documented in Schittkowski [61] and some performance
results are found in [60].

Moreover, the test problems are widely used and are contained also in other collections,
for example in the Cute library of Bongartz et al. [10], available through the URL

http://www.cse.clrc.ac.uk/activity/cute

or the test problem collection of Spellucci [70],

ftp://ftp.mathematik.tu-darmstadt.de/pub/department/software/opti/

See also the benchmark test page maintained by Mittelmann

http://plato.la.asu.edu/bench.html

In addition, AMPL versions of all test problems of the two collections are available through
the links

http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/hs/index.html

and

http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/s/index.html

see also Fourer et al. [28] for more details about AMPL.
We consider the general optimization problem, to minimize an objective function f(x)

under nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu

(1)

where x is an n-dimensional parameter vector. Objective function and constraints are
supposed to be continuously differentiable on the whole IRn.
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The test problems have been used in the past to develop the nonlinear programming
code NLPQL [58], a Fortran implementation of a sequential quadratic programming (SQP)
algorithm. The design of the numerical algorithm is founded on extensive comparative nu-
merical tests of Schittkowski [57], Schittkowski et al. [67], and Hock, Schittkowski [34]. To
complete the numerical tests, an additional random test problem generator was developed
for a major comparative study, see [57].

These efforts indicate the importance of a qualified set of test examples for debug-
ging, validation, performance evaluation, and quantitative numerical comparisons with
alternative codes. Although not collected in a very systematically way, the test problems
represent all numerical difficulties we observe in practice, for example

1. badly scaled objective and constraint functions,

2. badly scaled variables,

3. non-smooth model functions,

4. ill-conditioned optimization problems,

5. non-regular solutions at points where the constraint qualification is not satisfied,

6. different local solutions,

7. infinitely many solutions.

Academic test problems allow either an analytical or a numerical investigation of all
interesting properties, with nearly no or only limited efforts. On the other hand, nonlinear
programming problems based on a real-life background are often too complex to serve as
test problems, are often not available, are not programmed in a standard form as required
for massive tests, or contain round-off and truncation errors, in particular if secondary
iterative numerical algorithms are included to compute function and gradient values.

To give a first visual impression about the distribution of the number of variables
n and the number of constraints, m, we present both in Figures 1 and 2. We see, for
example, that about 270 of 306 test problems have not more than 10 variables. In a
similar way, the distribution of the number of constraints can be interpreted.

The test problems from the first collection of Hock and Schittkowski [33] were trans-
ported to Mathcad 11 to test the available optimizer and to get a graphical environment
to visualize the optimization problems, i.e., surface plots of objective function and contour
lines of constraints. The mcd-files can be downloaded from the home page of the author,

http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm
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The report is one out of a series of Mathcad test problem collections by which numer-
ical routines are tested and the implementation of optimization problems and dynamical
systems is outlined, i.e.,

1. data fitting [62],

2. ordinary differential equations [63],

3. differential algebraic equations [64],

4. partial differential equations [65],

5. partial differential algebraic equations [66].

Section 1 contains a list of all nonlinear programming test examples with further
details about data, problem structure, and literature. A detailed case study is outlined in
Section 2 to illustrate the implementation of a nonlinear optimization problem in Mathcad.
An appendix contains a list of all individual results including performance data, number
of function calls and number of iterations until successful termination, which have been
obtained by the code NLPQLP [60].

2 The Test Problems

A subset of 110 test problems of the collection of Hock and Schittkowski [33] is imple-
mented in form of Mathcad worksheets, i.e., mcd-files. To give at least a first impression
about the mathematical structure of a test problem, a classification code is introduced,
see Bus [16] or Hock and Schittkowski [33], in the form

OCD-K-s

where the following abbreviations are inserted:

O Information about objective function

C Constant objective function

L Linear objective function

Q Quadratic objective function

S Sum of squares

P Generalized polynomial objective function

G General objective function
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C Information about constraint functions

U Unconstrained problem

B Upper and lower bounds only

L Linear constraint functions

Q Quadratic constraint functions

P Generalized polynomial constraint functions

G General constraint functions

D Regularity of the problem

R Regular problem

I Irregular problem

K Information about the solution

T Exact solution known (’theoretical’ problem)

P Exact solution not known (’practical’ problem)

A problem is called a regular one, if the first and second derivatives of all problem
functions exist in the feasible region, otherwise an irregular on. K = P means that the
solution of the problem can be obtained only numerically (sometimes called ’real life’
problem). The number s is replaced by the current serial number within the class of test
problems identified by OCD-K.

To give an example, consider the problem

x1, x2 :

min(x1 − 2)2 + (x2 − 1)2

x1 + x2 ≤ 2 ,

x2
1 − x2 ≤ 0 .

(2)

Since the exact analytical solution is given by x� = (1, 1) and since it is the 6-th problem
of its class, we classify this problem by QQR-T-6.

The subsequently listed optimization problems are provided by the author in form of
Mathcad worksheets, and can be downloaded from

http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm

The following abbreviations are used to characterize test problems for a first quick review:
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TP test problem number
n number of variables
me number of equality constraints
m number of constraints
C-NO classification code
REF references

TP n me m C-NO REF
1 2 0 0 PBR-T-1 Betts [7] (Rosenbrock’s banana function)

2 2 0 0 PBR-T-2 Betts [7] (Rosenbrock’s banana function)

3 2 0 0 QBR-T-1 Schuldt [68]

4 2 0 0 PBR-T-3 Asaadi [1]

5 2 0 0 GBR-T-1 McCormick [43]

6 2 1 1 QQR-T-1 Betts [7]

7 2 1 1 GPR-T-1 Miele et al. [47]

8 2 2 2 CQR-T-1 Betts [7] (system of equations)

9 2 1 1 GLR-T-1 Miele et al. [47] (trigonometric function)

10 2 0 1 LQR-T-1 Biggs [9]

11 2 0 1 QQR-T-2 Biggs [9]

12 2 0 1 QQR-T-3 Mine at al. [48]

13 2 0 1 QPR-T-1 Betts [7], Kuhn and Tucker [41]

14 2 1 2 QQR-T-4 Bracken and McCormick [13], Himmelblau [31]

15 2 0 2 PQR-T-1 Betts [7] (Rosenbrock’s banana function)

16 2 0 2 PQR-T-2 Betts [7] (Rosenbrock’s banana function)

17 2 0 2 PQR-T-3 Betts [7] (Rosenbrock’s banana function)

18 2 0 2 QQR-T-5 Betts [7]

19 2 0 2 PQR-T-4 Betts [7], Gould [29]

20 2 0 3 PQR-T-5 Betts [7] (Rosenbrock’s banana function)

21 2 0 1 QLR-T-1 Betts [7]

22 2 0 2 QQR-T-6 Bracken, McCormick [13], Himmelblau [31], Sheela and Ramamoorthy [69]

23 2 0 5 QQR-T-7 Betts [7]

24 2 0 3 PLR-T-1 Betts [7], Box [12]

25 3 0 0 SBR-T-1 Holzmann [35], Himmelblau [31]

26 3 1 1 PPR-T-1 Huang and Aggerwal [37], Miele et al. [45]

27 3 1 1 PQR-T-6 Miele et al. [46, 47]

28 3 1 1 QLR-T-2 Huang and Aggerwal [37]

29 3 0 1 PQR-T-7 Biggs [9]

30 3 0 1 QQR-T-8 Betts [7]

31 3 0 1 QQR-T-9 Betts [7]

32 3 1 2 QPR-T-2 Evtushenko [26]

(continued)
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TP n me m C-NO REF
33 3 0 2 PQR-T-8 Beltrami [5], Hartmann [30]

34 3 0 2 LGR-T-1 Eckhardt [24]

35 3 0 1 QLR-T-3 Assadi [1], Charalambous [18], Dimitru and Moga [23], Sheela and Ra-
mamoorthy [69] (Beale’s problem)

36 3 0 1 PLR-T-2 Biggs [9]

37 3 0 2 PLR-T-3 Betts [7], Box [12]

38 4 0 0 PBR-T-4 Colville [20], Himmelblau [31] (Colville no. 4)

39 4 2 2 LPR-T-1 Miele et al. [46, 47]

40 4 3 3 PBR-T-2 Beltrami [5], Indusi [38]

41 4 1 1 PLR-T-4 Betts [7], Miele et al. [46]

42 4 2 2 QQR-T-10 Brusch [14]

43 4 0 3 QQR-T-11 Betts [7], Charalambous [18], Sheela and Ramamoorthy [69], Gould [29]
(Rosen-Suzuki)

44 4 0 6 QLR-T-4 Konno [40]

45 5 0 0 PBR-T-5 Betts [7], Miele et al. [46]

46 5 2 2 PGR-T-1 Huang and Aggerwal [37], Miele et al. [47]

47 5 3 3 PPR-T-3 Huang and Aggerwal [37], Miele et al. [47]

48 5 2 2 QLR-T-5 Huang and Aggerwal [37], Miele et al. [47]

49 5 2 2 PLR-T-5 Huang and Aggerwal [37]

50 5 3 3 PLR-T-6 Huang and Aggerwal [37]

51 5 3 3 QLR-T-6 Huang and Aggerwal [37]

52 5 3 3 QLR-T-7 Miele et al. [46, 47]

53 5 3 3 QLR-T-8 Betts [7], Miele et al. [46, 47]

54 6 1 1 GLR-T-2 Betts [7], Picket [53]

55 6 6 6 GLR-T-3 Hsia [36]

56 7 4 4 PGR-T-2 Brusch [14]

57 2 0 1 SQR-T-1 Gould [29], Betts [7]

59 2 0 3 GQR-T-1 Himmelblau [31]

60 3 1 1 PPR-T-1 Betts [7], Miele et al. [46, 47]

61 3 2 2 QQR-P-1 Fletcher and Lill [27]

62 3 1 1 GLR-P-1 Betts [7], Picket [53]

63 3 2 2 QQR-P-1 Himmelblau [31], Paviani [51], Sheela and Ramamoorthy [69]

64 3 0 1 PPR-P-1 Best [6]

65 3 0 1 QQR-P-3 Murtagh and Sargent [49]

66 3 0 2 LGR-P-1 Eckhardt [24]

67 3 0 14 GGI-P-1 Colville [20], Himmelblau [31] (Colville no. 8)

68 4 2 2 GGR-P-1 Collani [19] (cost optimal inspection plan)

69 4 2 2 GGR-P-2 Collani [19] (cost optimal inspection plan)

70 4 0 1 SQR-P-1 Himmelblau [31], Himmelblau and Yates [32]

71 4 1 2 PPR-P-3 Bartholomew-Biggs [3]

72 4 0 2 LPR-P-1 Bracken and McCormick [13] (optimal sample size)

73 4 1 3 LGI-P-1 Bracken, McCormick [13], Biggs [9] (cattle-feed)

74 4 3 5 PGR-P-1 Beuneu [8]

(continued)
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TP n me m C-NO REF
75 4 3 5 PGR-P-2 Beuneu [8]

76 4 0 3 QLR-P-1 Murtagh and Sargent [49]

77 5 2 2 PGR-P-3 Betts [7], Miele et al. [44, 46, 47]

78 5 3 3 PBR-P-4 Asaadi [1], Powell [54]

79 5 3 3 PPR-P-5 Betts [7], Miele et al. [44, 46, 47]

80 5 3 3 GPR-P-1 Powell [54]

81 5 3 3 GPR-P-2 Powell [54]

83 5 0 6 QQR-P-4 Colville [20], Dembo [22], Himmelblau [31] (Colville no. 3)

84 5 0 6 QQR-P-5 Himmelblau [31], Box [11, 12], Betts [7]

85 5 0 38 GGI-P-2 Caroll [17], Himmelblau [31]

86 5 0 10 PLR-P-1 Colville [20], Murtagh and Sargent [49], Himmelblau [31] (Colville no. 1)

87 6 4 4 GGI-P-3 Colville [20], Himmelblau [31] (Colville no. 6)

93 6 0 2 PPR-P-6 Bartholomew-Biggs [3] (transformer design)

95 6 0 4 LQR-P-1 Himmelblau [31], Holzmann [35]

96 6 0 4 LQR-P-2 Himmelblau [31], Holzmann [35]

97 6 0 4 LQR-P-3 Himmelblau [31], Holzmann [35]

98 6 0 4 LQR-P-4 Himmelblau [31], Holzmann [35]

99 7 2 2 GGR-P-3 Betts [7]

100 7 0 4 PPR-P-7 Asaadi [1], Charalambous [18], Wong [72]

101 7 0 6 PPR-P-8 Beck and Ecker [4], Dembo [22]

102 7 0 6 PPR-P-9 Beck and Ecker [4], Dembo [22]

103 7 0 6 PPR-P-10 Beck and Ecker [4], Dembo [22]

104 8 0 6 PPR-P-11 Dembo [22], Rijckaert [55] (optimal reactor design)

105 8 0 1 GLR-P-2 Bracken and McCormick [13] (maximum-likelihood estimation)

106 8 0 6 LQR-P-5 Avriel and Williams [2], Dembo [22] (heat exchanger design)

107 9 6 6 PGR-P-4 Bartholomew-Biggs [3] (static power scheduling)

108 9 0 13 QQR-P-6 Himmelblau [31], Pearson [52]

109 9 6 10 PGR-P-5 Beuneu [8]

110 10 0 0 GBR-P-1 Himmelblau [31], Paviani [51]

111 10 3 3 GGR-P-4 Himmelblau [31], Bracken and McCormick [13], White et al. [71]

112 10 3 3 GLR-P-3 Himmelblau [31], Bracken and McCormick [13], White et al. [71] (chemical
equilibrium)

113 10 0 8 QQR-P-7 Asaadi [1], Charalambous [18], Wong [72]

114 10 3 11 QGR-P-6 Bracken and McCormick [13] (alkylation process)

116 13 0 15 LQR-P-6 Dembo [21, 22] (3-stage membrane separation)

117 15 0 5 PQR-P-1 Colville [20], Himmelblau [31] (Colville no. 2, Shell dual)

118 15 0 29 QLR-P-2 Bartholomew-Biggs [3]

119 16 8 8 PLR-P-2 Colville [20], Himmelblau [31] (Colville no. 7)

3 A Mathcad Worksheet Example

Mathcad (http://www.mathcad.com) is an interactive GUI with a large number of built-
in mathematical functions. Special commands allow to solve also constrained nonlinear
programming problems. The subsequent lines describe the usage of these functions and
are taken from the Mathcad documentation:
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Minimizing or Maximizing a Function

Minimize (f, var1, var2, ...) Returns the values of var1, var2, ... which satisfy the
constraints in a solve block and which make the function f take on its smallest value.

Maximize (f, var1, var2, ...) Returns the values of var1, var2, ... which satisfy the
constraints in a solve block and which make the function f take on its largest value.

Arguments:

• var1, var2, ... are scalar variables found in the solve block. They are defined above
the solve block as guess values.

• f is a function defined above the solve block. For example, an argument g could
refer to the function g(x,y):=x/y.

Using the functions: To use the minimize or maximize function:

• Define the function to maximize or minimize.

• Define guess values for the variables being solved for.

• Type the word Given to start the solve block.

• Beneath the Given, type equalities and inequalities which act as constraints using
boolean operators.

• Enter the Minimize or Maximize function with the appropriate arguments.

Notes:

• These functions return a scalar when only one variable is involved. Otherwise they
return a vector whose first element is var1, second element is var2, and so on.

• If there are no constraints, the word Given is not necessary.

• You can type the Minimize and Maximize functions are not case-sensitive.

To give an impression how a test problem is implemented, we consider problem TP22,
where a quadratic objective function is to be minimized subject to one linear and one
parabolic inequality constraint,

x1, x2 :

min(x1 − 2)2 + (x2 − 1)2

x1 + x2 ≤ 2 ,

x2
1 − x2 ≤ 0 ,

(3)
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see also (2). Starting values are x0 = (2, 2) and optimal solution is x� = (1, 1), where both
constraints are active. Surface plot of objective function and contour plots of constraints
are shown in Figure 3. The diamond shows the position of the optimal solution, the black
rectangle the starting point.

Subsequently, the Mathcad implementation is listed, see Figure 4. The mcd-files
contain not only data and functions which describe the optimization problem, but also
the exact or best known solution, respectively, and the final deviation of the achieved
solution from the known one.

Figure 3: Mathcad Plot
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APPENDIX: Individual Results for NLPQLP

To show how efficiently these problems can be solved, we present some numerical per-
formance data, i.e., number of function calls, number of iterations, and final termination
accuracy. With the default tolerances given, all problems can be solved successfully by
the code NLPQLP, a new version of the SQP implementation NLPQL of the author [60].
Derivatives are computed by a five-point-difference formula and termination tolerance is
set to 10−7. More details about the test environment and evaluation of successful returns
are found in [60, 61].

The subsequent table contains a list of all test problems with the data

TP test problem number,
NF number of objective function evaluations,
NDF number of gradient evaluations of objective function,
FEX exact objective function value,
F computed objective function value,
DFX relative error in objective function,
DGX sum of constraint violations including bound violations.

TP NF NDF FEX F DFX DGX
1 26 19 0.00000000E+00 0.73114619E-10 0.73E-10 0.00E+00
2 20 15 0.50426188E-01 0.50426193E-01 0.11E-06 0.00E+00
3 10 10 0.00000000E+00 0.16103740E-19 0.16E-19 0.00E+00
4 2 2 0.26666667E+01 0.26666667E+01 0.00E+00 0.00E+00
5 8 6 -0.19132230E+01 -0.19132230E+01 0.11E-10 0.00E+00

(continued)
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TP NF NDF FEX F DFX DGX
6 10 9 0.00000000E+00 0.19130495E-12 0.19E-12 0.22E-04
7 11 10 -0.17320508E+01 -0.17320508E+01 -0.18E-08 0.11E-07
8 5 5 -0.10000000E+01 -0.10000000E+01 0.00E+00 0.53E-04
9 6 6 -0.50000000E+00 -0.50000000E+00 0.53E-09 0.25E-09
10 27 13 -0.10000000E+01 -0.10000000E+01 0.61E-10 0.82E-14
11 10 9 -0.84984642E+01 -0.84984642E+01 -0.30E-12 0.85E-12
12 9 8 -0.30000000E+02 -0.30000000E+02 -0.58E-09 0.35E-07
13 23 23 0.10000000E+01 0.10002673E+01 0.27E-03 0.00E+00
14 6 6 0.13934650E+01 0.13934650E+01 -0.10E-11 0.77E-12
15 3 3 0.30650001E+01 0.30650000E+01 -0.20E-07 0.37E-09
16 12 8 0.25000000E+00 0.39820605E+01 0.15E+02 0.00E+00
17 19 17 0.99999998E-02 0.99999998E-02 0.72E-11 0.00E+00
18 8 8 0.50000000E+01 0.50000000E+01 -0.11E-08 0.39E-07
19 29 19 -0.69618137E+00 -0.69618137E+00 -0.15E-08 0.79E-07
20 5 5 0.38198730E+02 0.38198730E+02 0.19E-15 0.00E+00
21 5 5 -0.99959998E+00 -0.99959998E+00 -0.89E-11 0.00E+00
22 7 6 0.10000000E+01 0.10000000E+01 -0.22E-11 0.32E-11
23 7 7 0.20000000E+01 0.20000000E+01 0.27E-13 0.00E+00
24 5 5 -0.10000000E+01 -0.10000000E+01 -0.33E-08 0.67E-08
25 23 19 0.00000000E+00 0.57804601E-02 0.58E-02 0.00E+00
26 20 18 0.00000000E+00 0.61563845E-07 0.62E-07 0.59E-04
27 37 22 0.40000000E+01 0.40000000E+01 0.44E-10 0.23E-11
28 5 4 0.00000000E+00 0.24873839E-14 0.25E-14 0.21E-07
29 13 12 -0.22627417E+02 -0.22627417E+02 -0.21E-09 0.69E-08
30 19 17 0.10000000E+01 0.10000000E+01 0.37E-07 0.00E+00
31 12 7 0.60000000E+01 0.60000000E+01 -0.51E-08 0.80E-08
32 3 3 0.10000000E+01 0.10000000E+01 -0.16E-09 0.78E-10
33 5 5 -0.45857864E+01 -0.40000000E+01 0.13E+00 0.00E+00
34 8 8 -0.83403245E+00 -0.83403245E+00 -0.12E-09 0.11E-08
35 7 7 0.11111111E+00 0.11111111E+00 0.15E-12 0.49E-12
36 7 4 -0.33000000E+04 -0.33000000E+04 -0.87E-12 0.26E-10
37 11 10 -0.34560000E+04 -0.34560000E+04 0.16E-13 0.00E+00
38 27 27 0.00000000E+00 0.29634809E-07 0.30E-07 0.00E+00
39 14 12 -0.10000000E+01 -0.10000000E+01 -0.46E-08 0.28E-08
40 6 6 -0.25000000E+00 -0.25000000E+00 -0.93E-09 0.43E-09
41 7 7 0.19259259E+01 0.19259259E+01 0.30E-08 0.26E-10
42 10 8 0.13857864E+02 0.13857864E+02 -0.31E-08 0.17E-07
43 36 11 -0.44000000E+02 -0.44000000E+02 -0.53E-08 0.83E-07
44 6 6 -0.15000000E+02 -0.15000000E+02 0.20E-09 0.00E+00
45 8 8 0.10000000E+01 0.10000000E+01 0.00E+00 0.00E+00
46 14 12 0.00000000E+00 0.55479250E-06 0.55E-06 0.19E-06
47 17 13 0.00000000E+00 0.46052734E-09 0.46E-09 0.93E-07
48 9 8 0.00000000E+00 0.27709246E-07 0.28E-07 0.12E-10
49 34 34 0.00000000E+00 0.71968270E-07 0.72E-07 0.68E-10
50 18 14 0.00000000E+00 0.31208038E-08 0.31E-08 0.91E-12
51 5 3 0.00000000E+00 0.41972609E-18 0.42E-18 0.92E-09
52 8 6 0.53266476E+01 0.53266476E+01 0.39E-10 0.26E-13
53 8 7 0.40930233E+01 0.40930233E+01 0.74E-08 0.41E-11
54 2 2 -0.90807476E+00 -0.72240097E-33 0.10E+01 0.57E-05
55 31 17 0.63333333E+01 0.67733692E+01 0.69E-01 0.71E-14
56 11 9 -0.34560000E+01 -0.34560000E+01 -0.10E-07 0.24E-07
57 13 11 0.28459670E+01 0.28459670E+01 0.16E-09 0.00E+00

(continued)
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TP NF NDF FEX F DFX DGX
59 17 15 -0.78042263E+01 -0.67545660E+01 0.13E+00 0.00E+00
60 11 10 0.32568200E-01 0.32568200E-01 0.23E-08 0.67E-08
61 8 7 -0.14364614E+03 -0.14364614E+03 -0.11E-09 0.18E-07
62 14 9 -0.26272514E+05 -0.26272514E+05 -0.47E-12 0.11E-12
63 8 8 0.96171517E+03 0.96171517E+03 0.30E-11 0.14E-09
64 152 84 0.62998424E+04 0.62998424E+04 -0.48E-10 0.70E-11
65 8 8 0.95352886E+00 0.95352882E+00 -0.42E-07 0.54E-06
66 7 7 0.51816327E+00 0.51816327E+00 -0.22E-08 0.31E-08
67 20 20 -0.11620365E+04 -0.11620365E+04 -0.15E-07 0.00E+00
68 40 26 -0.92042502E+00 -0.92042504E+00 -0.18E-07 0.11E-06
69 63 40 -0.95671289E+03 -0.95671289E+03 0.43E-09 0.18E-10
70 37 34 0.74984636E-02 0.74984649E-02 0.17E-06 0.00E+00
71 5 5 0.17014017E+02 0.17014017E+02 -0.26E-08 0.22E-08
72 22 22 0.72767938E+03 0.72767936E+03 -0.25E-07 0.11E-11
73 5 5 0.29894378E+02 0.29894378E+02 0.62E-10 0.17E-11
74 11 11 0.51264981E+04 0.51264981E+04 0.48E-10 0.94E-09
75 9 9 0.51744129E+04 0.51744127E+04 -0.37E-07 0.25E-11
76 6 6 -0.46818182E+01 -0.46818182E+01 0.45E-10 0.00E+00
77 16 15 0.24150513E+00 0.24150513E+00 -0.14E-07 0.34E-07
78 8 8 -0.29197004E+01 -0.29197004E+01 0.49E-10 0.19E-11
79 10 9 0.78776821E-01 0.78776822E-01 0.10E-07 0.30E-07
80 7 7 0.53949848E-01 0.53949847E-01 -0.73E-08 0.72E-08
81 8 8 0.53949848E-01 0.53949846E-01 -0.28E-07 0.27E-07
83 18 7 -0.30665539E+05 -0.30665539E+05 -0.27E-11 0.14E-13
84 67 35 -0.52803351E+02 -0.52361456E+02 0.84E-02 0.21E-04
85 91 56 -0.19051338E+01 -0.19051553E+01 -0.11E-04 0.15E-06
86 6 5 -0.32348679E+02 -0.32348679E+02 0.18E-09 0.14E-10
87 20 16 0.89275977E+04 0.89275977E+04 0.63E-10 0.84E-09
93 15 12 0.13507596E+03 0.13507596E+03 0.12E-07 0.40E-09
95 2 2 0.15619514E-01 0.15619530E-01 0.98E-06 0.00E+00
96 2 2 0.15619513E-01 0.15619530E-01 0.10E-05 0.00E+00
97 7 7 0.31358091E+01 0.31358089E+01 -0.63E-07 0.00E+00
98 7 7 0.31358091E+01 0.31358089E+01 -0.63E-07 0.00E+00
99 52 32 -0.83107989E+09 -0.83107989E+09 0.71E-11 0.45E-09
100 20 14 0.68063006E+03 0.68063006E+03 0.11E-09 0.24E-07
101 68 41 0.18097648E+04 0.18097648E+04 0.61E-11 0.13E-12
102 54 38 0.91188057E+03 0.91188057E+03 0.10E-09 0.75E-13
103 45 31 0.54366796E+03 0.54366796E+03 0.78E-10 0.23E-13
104 16 16 0.39511634E+01 0.39511634E+01 0.44E-09 0.57E-08
105 56 48 0.11384162E+04 0.11384185E+04 0.20E-05 0.00E+00
106 37 37 0.70493309E+04 0.70492480E+04 -0.12E-04 0.19E-11
107 8 8 0.50550118E+04 0.50550118E+04 0.30E-10 0.48E-13
108 14 13 -0.86602540E+00 -0.86602544E+00 -0.37E-07 0.72E-07
109 46 31 0.53620693E+04 0.53620692E+04 -0.18E-07 0.58E-11
110 10 7 -0.45778470E+02 -0.45778470E+02 0.28E-09 0.00E+00
111 51 51 -0.47761090E+02 -0.47761091E+02 -0.13E-07 0.18E-09
112 23 20 -0.47761086E+00 -0.47761074E+00 0.24E-06 0.56E-10
113 16 13 0.24306209E+02 0.24306209E+02 0.16E-09 0.24E-08
114 59 58 -0.17688070E+02 -0.17688070E+02 -0.45E-09 0.32E-06
116 104 70 0.97588409E+02 0.97587510E+02 -0.92E-05 0.40E-07
117 16 16 0.32348679E+02 0.32348679E+02 -0.32E-10 0.00E+00
118 19 19 0.66482045E+03 0.66482045E+03 0.57E-11 0.15E-07

(continued)
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TP NF NDF FEX F DFX DGX
119 13 10 0.24489970E+03 0.24489970E+03 0.75E-11 0.64E-12

22


	Introduction
	The Test Problems
	A Mathcad Worksheet Example

