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Abstract

The purpose of the paper is to introduce a set of Mathcad worksheets containing
partial differential equations (PDEs). They can be used to become familiar with
Mathcad implementation of PDEs and with the behavior of dynamical systems in
general. The problems are taken from a collection of test examples for data fitting
in dynamical systems, see Schittkowski [59]. The report contains a summary of 131
partial differential equations that have been transferred to Mathcad and a detailed
example. All worksheets can be downloaded from the home page of the author2. A
particular advantage of executing these problems from Mathcad is the possibility
to plot corresponding solutions very easily.

1 c©2003 Mathsoft Engineering & Education Inc.
2http://www.klaus-schittkowski.de
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1 Introduction

Time-dependent partial differential equations can be considered as extensions of ordinary
differential equations, if we allow that the right-hand side depends on first and second
derivatives of the model functions with respect to an additional space or spatial variable
x. For example, they could describe the dynamic behavior of a vibrating beam over time.

In our case, we consider only one-dimensional partial differential equations with x ∈
[xL, xR], and the state variables are denoted by

u(x, t) = (u1(x, t), . . . , unp(x, t))T

depending on the time variable t and the spatial variable x. xL and xR are called the left
and right boundaries of x.

First, we introduce the subscript notation

ut(x, t) =
∂u(x, t)

∂t
, ux(x, t) =

∂u(x, t)

∂x
, uxx(x, t) =

∂2u(x, t)

∂x2
.

The general one-dimensional partial differential equation under consideration is

ut = F (u, ux, uxx, x, t) . (1)

If we consider individual coefficient functions

F (u, ux, uxx, x, t) = (F1(u, ux, uxx, x, t), . . . , Fnp(u, ux, uxx, x, t))T ,

we write (1) also in the form of a system of scalar equations

∂u1

∂t
= F1(u, ux, uxx, x, t) ,
· · ·

∂unp

∂t
= Fnp(u, ux, uxx, x, t) .

(2)

We call (1) or (2), respectively, a time-dependent system in explicit formulation, since it
contains the partial derivative with respect to t explicitly at the left-hand side.

We do not require that the right-hand side of (2) always depends explicitly on ux or
uxx, respectively. It is even allowed that both spatial derivatives vanish. Moreover, linear
and nonlinear equations are handled in the same way. Since systems of partial differential
equations depend on several independent parameters, x and t in our case, they are also
called distributed systems. The model function F is defined on IRnp×IRnp×IRnp×IR×IR,
and has function values in IRnp . We assume for the moment that F is at least a continuous
function in all variables.
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To complete the definition of a partial differential equation (PDE), we need initial
values

u(x, 0) = u0(x) , (3)

where we assume again that the integration is to be performed over a time interval of
the form [0, T ] with a sufficiently large bound T . u0(x) is a given function defined on the
integration area [xL, xR].

Classical boundary conditions are either of Dirichlet type

u(xL, t) = uL(t) ,

u(xR, t) = uR(t) ,
(4)

with given functions uL(t) and uR(t) defined on the whole time interval (0, T ], or of
Neumann type

ux(xL, t) = ûL(t) ,

ux(xR, t) = ûR(t) ,
(5)

where derivative or flux functions ûL(t) and ûL(t) are known for all t ∈ (0, T ]. We have
the option to fix either the function values of the solution or its spatial derivatives, to mix
both conditions, or to omit one or another boundary condition completely.

The number and order of boundary conditions depends on the model structure, for
example whether F depends on uxx or not, in order to get a uniquely defined solution. As
a rule of thumb, the total number of scalar boundary conditions should coincide with the
number of all partial differentiations, where the highest order of spatial differentiation is
counted for each state variable. Boundary and initial conditions are called inconsistent,
if they do not fit continuously at connecting points, for instance if uL(0) �= u0(xL) in case
of a left Dirichlet boundary condition.

As indicated above, a solution is denoted by u(x, t). However, we must be very care-
ful when trying to define the solution of a PDE in a mathematically rigorous way. The
answer is not obvious, since we allow inconsistent boundary conditions and the propa-
gation of non-continuous transitions through the integration area, for example in case of
propagation of shocks. In these cases, one has to develop a concept of weak solutions of
a PDE. More theoretical investigations of this question are found in textbooks on partial
differential equations, see Zachmanoglou and Thoe [81] or Renardy and Rogers [51]. In
most situations, it is sufficient to assume for u(x, t) to become a solution, that u satisfies
(2) for all x ∈ (xL, xR) and for all t ∈ (0, T ).

Typically, partial differential equations are classified by geometric terms like parabolic
or hyperbolic. Originally, they were defined for two-dimensional, second-order partial
differential equations, linear in the second-order terms with constant coefficients, see van
Kan and Segal [29], Schittkowski [59], or any other introductory textbook on partial
differential equations.
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To give an example, let us consider parabolic partial differential equations In this case,
we assume that F does not depend on the first spatial derivative ux, only on u and uxx.
Thus, we write a parabolic PDE in the form

ut = F (u, uxx, x, t)

with suitable initial and boundary conditions of the type (3), (4) or (5), respectively.
Some of the most important physical interpretations of parabolic equations are diffusion
processes describing transportation phenomena through media.

Example 1.1 The probably most popular partial differential equation is the heat equation
describing the conduction of heat in a solid, which is considered now in the form of a special
variant. Let T be the temperature of the solid, x the spatial position along a dominating
direction of the solid, and t the time. From Fourier’s second law for heat conduction, we
get the equation

Tt = D Txx (6)

with a thermal diffusion constant D > 0. The spatial variable x varies from 0 to L and the
time variable t must be non-negative, t ∈ [0, T ]. Numerous initial values and boundary
conditions are found in the literature. In our case, we set an initial heat distribution
T (x, 0) = sin(πx/L) at time t = 0 for all x ∈ (0, L) and Dirichlet boundary conditions
T (0, t) = T (L, t) = 0 for all t ≥ 0. It is easy to verify by insertion that

T (x, t) = e−tDπ2/L2

sin(xπ/L)

is a solution of the PDE. Typical for parabolic equations is the exponential damping of the
initial values along the t-axis, see Figure1.

The report is one out of a series of Mathcad test problem collections by which numer-
ical routines are tested and the implementation of optimization problems and dynamical
systems is outlined, i.e.,

1. nonlinear programming [61],

2. data fitting [62],

3. ordinary differential equations [63],

4. differential algebraic equations [64],

5. partial differential algebraic equations [65].
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Heat Equation
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Figure 1: Solution of a Parabolic Equation

Section 2 contains a brief outline of the method of lines by which a PDE is transformed
into a system of ordinary differential equations (ODEs). Subsequently, an implicit inte-
gration routine is used to integrate these equations. This basic idea is implemented in the
routine Pdesolve in Mathcad, which is used for all test cases. A simple example is shown
in Section 3 to illustrate the preparation of the model equations for a partial differential
equation. A list of the Mathcad worksheet files and some further details about problem
structure, background, and source is given in Section 4.

2 The Method of Lines

The underlying idea is to transform the partial differential equations into a system of ordi-
nary differential equations by discretizing the model functions with respect to the spatial
variable x. This approach is known as the method of lines, see for example Schiesser [53]
or Schittkowski [59]. We denote the number of spatial discretization points by n, and pro-
ceed from a uniform distribution of grid points for simplicity. Instead of a function u(x, t),
we consider now a family of approximating time-dependent functions ui(t) = u(xi, t) for
i = 1, . . ., n, where

xi = xL +
i − 1

n − 1
(xR − xL) . (7)

The next step consists of computing an appropriate approximation of the first spatial
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derivative ux(x, t) at a line x = xi. To demonstrate the principal idea, we apply the
two-sided central difference formula

ux(xi, t) � 1

2h

(
ui+1(t)− ui−1(t)

)
(8)

with h = 1/(n − 1) and i = 2, . . ., n − 1. For approximating derivatives at boundaries,
we use

ux(x1, t) � 1

2h

(
− u3(t) + 4u2(t)− 3u1(t)

)
,

ux(xn, t) � 1

2h

(
3un(t)− 4un−1(t) + un−2(t)

)
.

(9)

For numerical realization, one has to take care of the desired discretization accuracy.
Higher-order formulae are available that guarantee the same approximation order at the
boundaries and the interior of the integration area.

Assume that Dirichlet boundary conditions (4) are given. Then we know the boundary
functions

u1(t) = uL(t) , un(t) = uR(t) (10)

exactly which are inserted into (9).
For approximating uxx(x, t), we have either the possibility to use the formula for first

derivatives recursively, or to derive a special formula for second derivatives. Assume now
that second derivatives at x = xi are approximated by

uxx(xi, t) � 1

h2

(
ui+1(t)− 2ui(t) + ui−1(t)

)
(11)

for i = 2, . . ., n − 1, and that boundary approximations are obtained from

uxx(x1, t) � 1

h2

(
u3(t)− 2u2(t) + u1(t)

)
,

uxx(xn, t) � 1

h2

(
un(t)− 2un−1(t) + un−2(t)

)
.

(12)

Again, boundary functions (10) are inserted directly as far as known. If Neumann bound-
ary conditions of the form (5) are given, we replace approximations of first derivatives at
boundaries by known functions ûL(t) or ûR(t),

ux(x1, t) = ûL(t) , ux(xn, t) = ûR(t) , (13)

and insert them into the approximation formulae for second derivatives leading to

uxx(x1, t) � 1

h

( 1

2h
(u3(t)− u1(t))− ûL(t)

)
,

uxx(xn, t) � 1

h

(
ûR(t)− 1

2h
(un(t)− un−2(t))

) (14)
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in our simplified case study.
After inserting (8) to (14) into the right-hand side function F of (1), we get a system

of ordinary differential equations of the form

u̇i(t) = F (ui(t), d
1
i (u, t, h), d2

i (u, t, h), xi, t) , (15)

i = 1, . . ., n. Here we replace the partial derivative subject to t by the total derivative
indicated by the dot, and d1

i (u, t, h), d2
i (u, t, h) denote the approximation formulae for

first and second derivatives with u(t) = (u1(t), . . . , un(t))
T . If np denotes the number of

partial differential equations, we obtain a set of np n ordinary differential equations after
discretization.

Redundant differential equations belonging to Dirichlet boundary conditions are ne-
glected to reduce the total number of equations. If, for example, each component of the
PDE has a left and right Dirichlet condition, index i in (15) runs from 2 to n− 1, and we
get a system of np (n − 2) ordinary differential equations.

From the initial values (3), u(x, 0) = u0(x), we obtain immediately initial values for
the ordinary differential equations

ui(0) = u0(xi) (16)

for i = 1, . . ., n. This completes the transformation of one-dimensional, time-dependent
partial differential equations into a system of ordinary differential equations by the method
of lines. The resulting ODE can be solved by any available solver, for example the implicit
Radau-type method of Hairer and Wanner [23].

However, there is one difficulty when applying the method of lines. It turns out that
the system of ordinary differential equations becomes stiff with decreasing discretization
accuracy h, i.e., with increasing number of discretization points n. Thus, it is recom-
mended that implicit solution methods are implemented as soon as h becomes sufficiently
small, requiring computation of the Jacobian matrix of the right-hand side of (15) subject
to ui, i = 1, . . ., n. Depending on the discretization procedure chosen, the matrix has
a band structure that can be exploited when solving the corresponding system of linear
equations.

3 A Mathcad Worksheet Example

Mathcad (http://www.mathcad.com) is an interactive GUI with a large number of built-
in mathematical functions. Special commands allow to solve systems of one-dimensional
partial differential equations. The subsequent lines describe the usage of Pdesolve for
solving PDEs, see also the Mathcad documentation
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The Pdesolve function is used within solve blocks, allowing for natural notation, and
are the easiest to use and interpret.

Pdesolve(u, x, xrange, t, trange, [xpts], [tpts])) returns a function or vector of functions
of x and t that solve a one-dimensional nonlinear PDE or a system of PDEs, see (1). Values
are interpolated from a matrix of solution points calculated using the numerical method
of lines.

Arguments:

• u is the explicit vector of function names (with no variable names included) precisely
as they appear within the solve block. This argument degenerates to a scalar in the
case of a single PDE.

• x is the spatial variable.

• xrange is a 2-element column vector containing the boundary values for x. Both
values must be real.

• t is the time variable.

• trange is a 2-element column vector containing the boundary values for t. Both
values must be real.

• xpts (optional) is the integer number of spatial discretization points.

• tpts (optional) is the integer number of temporal discretization points.

A solve block refers to a group of steps involved when solving a system of differential
equations. Needed are initial the key word Given, a set of equations, and the solving
function Pdesolve. Collectively, these steps are known as a solve block.

To give an impression how a test problem is implemented, we consider problem HEAT,
see Example 6. Subsequently, the Mathcad implementation is listed, see Figure 2.
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Figure 2: Mathcad Implementation: Heat Equation
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4 List of All Test Problems

The subsequent table contains a list of all test problems together with the number of
partial differential equations np, a brief description of the practical or mathematical back-
ground, and some references. The differential equations have first been implemented in
the modelling language PCOMP, see Dobmann et al. [12] or Schittkowski [59, 58, 60]. The
transformation into Mathcad worksheets follows a unified format based on the PCOMP
equations. Thus, the implementations do not exploit all possible features of Mathcad to
get the most elegant and compact description. All mcd-files can be downloaded from the
home page of the author3.

It should be noted that some solutions are highly oscillating or at least very time-
consuming because of a narrow grid. Among the test problems are a few hyperbolic
equations with non-continuous boundary conditions, which can be accurately solved only
by special shock-absorbing upwind formulae, see Schittkowski [59] for details. Among
them are several variants of advection equations and Burger’s equation, for example.

Partial Differential Equations

name np background ref
ADV DIFF 3 Advection-diffusion equation with Riemann initial data [30]
ADV VC 1 Advection equation with variable coefficient [68]
ADV VTC 2 Advection equations with variable time coefficient [68]
ADVEC 2N 1 Nonlinear unsteady advection (n=2) [75]
ADVEC 5N 1 Nonlinear unsteady advection (n=5) [75]
ADVEC LU 1 Linear unsteady advection-diffusion [75]
ADVEC S 1 Linear steady advection-diffusion with source term [75]
ADVECT 1 Advection equation, first-order hyperbolic PDE [53]
ADVECT N 1 Advection equation with a nonlinear source term [45]
ADVECT R 1 Advection equation with right boundary value [53]
ADVECT2 2 Two advection equations (different flux directions) [53]
BLOW UP 1 Degenerated parabolic equation with blow-up [21]
BRAIN 1 Transport phenomena in brain tissue [5]
BRUSSEL 2 Brusselator with diffusion [20], [57]

(continued)

3http://www.klaus-schittkowski.de
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name np background ref
BSE 1 Black-Scholes equation governing price of derivative secu-

rity
[6], [79]

BUBB BIO 3 Bubble column bio-reactor [41]
BUBBLE 2 Dynamic oxygen uptake of water in bubble column
BURGER 1 Parabolic Burger’s equation with exact solution [67]
BURGER E 1 Viscous Burger’s equation with exact solution, mue=0.01 [53], [57]
BURGER I 1 Burger’s equation in the inviscid limit [80], [45]
BURST 2 Crisis induced intermittent bursting in reaction-diffusion

chemical systems
[18], [17]

CD TRANS 1 Convective-dispersive transport equation with nonlinear re-
actions

[31]

CNT CUR1 2 Counter-current separation of fluid phase concentrations
with phase equilibrium

[47]

CON DIV1 1 Periodic convection dominated diffusion [35]
CON DIV2 1 Periodic convection dominated diffusion [35]
CSE 2 Cubic Schroedinger equation with one soliton [54]
CTFLOW P 2 Two incompressible counter-current flows of binary liquid

mixture with permeable wall
[40]

CUBIC 1 Cubic conservation law with Riemann data [24]
DC TUBE 1 Diffusion-convection in a tube
DEHYDRO 2 Dehydrogenization of ethylbenzene to styrene in a tubular

reactor
[76]

DESIGN 1 First-order hyperbolic PDE, inhomogeneous part [71]
DIFF 1D 1 Diffusion problem with Dirichlet and Neumann boundary

conditions
DIFF ADS 2 Diffusion and absorption reaction
DIFF ETH 1 Diffusion of ethanol in water [76], [25]
DIFF NLB 1 Nonlinear diffusion with nonlinear boundary condition [67]
DIFFPT 1 Diffusion and partitioning in biological systems, non-

continuous transition
[38]

DIFFUS 1 Diffusion equation with constant parameters
DISRE 1 Non-isothermal tubular reactor with axial dispersion [28], [57]
DISRET 2 Non-isothermal tubular reactor with axial dispersion [28], [57]
ECOLOGY 2 Population ecology with planktonit predator-prey and

crowding
[32]

ELECTRO 2 Electrodynamic application [7], [57]
ELLIPTIC 1 Elliptic test problem [67]

(continued)
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name np background ref
ENZDYN 2 Dynamic diffusion and enzymatic reaction [28]
FILTWASH 1 Filter washing [28]
FINAG 2 Nerve conduction [42]
FIXBED 2 Catalytic fixed bed reactor with one exothermal reaction [13], [15]
FLAME 2 Dwyer-Sanders flame propagation model [14], [73], [57]
FRONT 2 Flame propagation model with non-constant moving front [46]
GAS CONV 1 Gas convection
GROWTH 1 Logistic model of population growth (Fisher’s equation) [70]
HEAT 1 Heat equation [53], [57]
HEAT BD3 1 Nonlinear heat equation, boundary conditions of third type
HEAT CD 1 One-dimensional heat conduction [52]
HEAT CW 1 Graetz problem with constant wall heat flux [52]
HEAT CYL 1 Cylindrical heat transfer [67]
HEAT EX 1 Tubular heat exchanger [52]
HEAT MS 2 Heat transport equation at the microscale (3rd order) [78]
HEAT NLB 1 Heat equation with nonlinear boundary condition of Stefan-

Boltzmann type
[69]

HEAT TDC 1 Heat diffusion with time-dependent diffusion parameter
HOT SPOT 1 ’Hot Spot’ problem from combustion theory [73], [57]
HYG POLY 1 Diffusion of water into a hygroscopic polymer
HYP2ND 2 Hyperbolic equation of second order, alternating cosine

waves
HYPER 2 System of two advection equations, first-order hyperbolic

PDEs
HYPERBO1 2 Hyperbolic test system [4]
HYPERBO2 2 Hyperbolic test system [4]
HYPERBO3 2 Hyperbolic test system [4]
HYPERBO4 2 Hyperbolic test system [4]
HYPERBO5 2 Hyperbolic test system [4]
IN LAYER 2 Catalyst with inert layers (diffusion, absorption, desorp-

tion)
INV PROB 1 Inverse problem in heat conduction [22]
KILN 1 Heating a probe in a kiln [10]
LAM FLOW 1 Unsteady laminar flow in a circular tube [52], [27]
LDCP 1 Linear diffusion-convection equation [49], [47]
LIN HC 1 Linear heat conduction [1]
LIN HYP1 1 First-order linear hyperbolic equation [77]

(continued)
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name np background ref
LOSSLESS 2 Lossless electric transmission line [54]
MOL DIFF 1 Molecular diffusion (boundary value problem) [37]
MOVFRONT 1 Moving front (Burger’s equation) [1]
NERVE 2 Nerve pulse [74]
NL HEAT 1 Nonlinear heat equation [70]
NL PDE 1 Highly nonlinear PDE with exact solution [54]
NLINPDE 2 Two nonlinear PDE’s with exact solution [53], [34]
NLSE 2 Nonlinear Schroedinger equation, exact soliton solution

(complex)
[55]

NOISE 1 Nonlinear deblurring and noise removal [36]
NON AD 1 Nonlinear advection-diffusion equation [30]
OBSTACLE 2 Shallow water flow over an obstacle [33]
ONESTEP 2 One-step reaction with diffusion and non-unit Lewis num-

ber
[1]

OSC SOL 3 Oscillatory solution of hyperbolic PDE [19]
PAR CTRL 1 Parabolic optimal control problem [39]
PAR SIN 1 Parabolic PDE with inhomogeneous sinus-term [50], [48]
PARAB1 1 Brain transport [5]
PARAB2 2 Parabolic equation, identifiability test [5]
PARAB3 1 Parabolic equation, identifiability test [5]
PARAB4 1 Parabolic equation, identifiability test [5]
PARAB5 1 Parabolic equation, identifiability test [5]
PARAB6 1 Parabolic equation, identifiability test [5]
PHYP PBC 1 Parabolic-hyperbolic equation with periodic boundary con-

ditions
[2]

POLLUTN 4 SST pollution in the stratosphere [67], [57]
POLY DYN 1 Chain length of polymerization process
QUENCH1 1 Degenerate nonlinear quenching [66]
QUENCH2 1 Degenerate nonlinear quenching [66]
REA DIF1 1 Reaction-diffusion equation [16]
REA DIF2 1 Reaction-diffusion equation [16]
RESERVOI 1 Reservoir simulation by the Buckley-Leverett equation [72]
ROD 1 Rod of solid explosive
SH FRONT 1 PDE with sharp front, exact solution known [11]
SHEAR 3 Shear band formation [43], [20], [57]
SIN GOR1 2 Sine-Gordon equation, exact kink-soliton solution [55]
SIN GOR2 2 Sine-Gordon equation, exact kink-kink-collision solution [55]

(continued)
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name np background ref
SINGSTEP 1 Single-step reaction with diffusion [1]
SLAB 3 Dwyer-Sanders flame propagation model [44]
SOLID 1 Heating of solid sphere [3]
SOLITON 2 Kink soliton (Sine-Gordon equation)
SPHERE 1 Heat conduction in sphere with exothermic chemical reac-

tion
[53]

STARTBED 1 Diffusion
STFFDET1 1 Stiffness detection [16]
STFFDET2 1 Stiffness detection [16]
STR FISH 1 Stream fish tracked by mark-recapture technique
TELEGRPH 2 Telegraph equation [54]
TIME OPT 1 Time-optimal heat distribution [56]
TONGUE 1 Motion of glacier tongue [9]
TRAV WAV 1 Traveling waves (Burger’s equation, exact solution known) [1]
TUBE0 1 Zero-order reaction in a catalytic-walled tube [8]
TWO POPS 2 Two populations [70]
VAR VELO 1 First-order linear hyperbolic equation with variable velocity

field
[77]

VISCOUS 5 Variable viscosities with periodic boundary [2]
WATER 2 Flow of shallow water over a barrier [67], [26]
WAVE1 2 Hyperbolic wave equation (exact solution known) [53]
WAVE2 2 Wave equation in form of two hyperbolic equations
WAVE3 2 Hyperbolic wave equation [76]
WAVE4 2 Two waves travelling in opposite directions, semi-

hyperbolic system
[73], [57]

Acknowledgement: The author would like to thank Kathrin Maul, Fiona Fleischmann,
Angela Busse, Irina Hübner, Dominik Stadelmaier, and Florian Bauer for preparing the
Mathcad worksheets.
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[41] Munack A. (1995): Simulation bioverfahrenstechnischer Prozesse, in: Prozessimu-
lation, H. Schuler ed., VCH, Weinheim, 409-455

[42] Naguma J., Arimoto S., Yoshizawa (1962): An active pulse transmission line sim-
ulating nerve axon, Proceedings of the IRE, Vol. 50, 2061-2070

[43] Nowak U. (1995): A fully adaptive MOL-treatment of parabolic 1D-problems with
extrapolation techniques, Preprint SC 95-25, ZIB Berlin

[44] Otey G.R., Dwyer H.A. (1979): Numerical study of the interaction of fast chemistry
and diffusion, AIAA Journal, Vol. 17, 606-613

[45] Pennington S.V., Berzins M. (1994): New NAG Library software for first-order
partial differential equations, ACM Transactions on Mathematical Software, Vol.
20, No. 1, 63-99

[46] Peters N., Warnatz J. eds. (1982): Numerical Methods in Laminar Flame Propaga-
tion, Notes on Numerical Fluid Dynamics, Vol. 6, Vieweg, Braunschweig

[47] Pfeiffer B.-M., Marquardt W. (1996): Symbolic semi-discretization of partial dif-
ferential equation systems, Mathematics and Computers in Simulation, Vol. 42,
617-628

[48] Pfleiderer J., Reiter J. (1991): Biplicit numerical integration of partial differential
equations with the transversal method of lines, Report No. 279, DFG SPP Anwen-
dungsbezogene Optimierung und Steuerung, Technical University, Dept. of Mathe-
matics, Munich

18



[49] Price H., Varga R., Warren J. (1966): Application of oscillation matrices to
diffusion-convection equations, Journal of Methematical Physics, 301-311

[50] Rektorys K. (1982): The Method of Discretization in Time and Partial Differential
Equations, Reidel, Dordrecht

[51] Renardy M., Rogers R.C. (1993): An Introduction to Partial Differential Equations,
Texts in Applied Mathematics, Vol. 13, Springer, Berlin

[52] Schiesser W.E., Silebi C.A. (1997): Computational Transport Phenomena, Cam-
bridge University Press

[53] Schiesser W.E. (1991): The Numerical Method of Lines, Academic Press, New York,
London

[54] Schiesser W.E. (1994): Computational Mathematics in Engineering and Applied
Science, CRC Press, Boca Raton

[55] Schiesser W.E. (1994): Method of lines solution of the Korteweg-de Vries equation,
Computers in Mathematics and Applications, Vol. 28, No. 10-12, 147-154

[56] Schittkowski K. (1979): Numerical solution of a time-optimal parabolic boundary-
value control problem, Journal of Optimization Theory and Applications, Vol. 27,
271-290

[57] Schittkowski K. (1997): Parameter estimation in one-dimensional time dependent
partial differential equations, Optimization Methods and Software, Vol. 7, No. 3-4,
165-210

[58] Schittkowski K. (2001): EASY-FIT: A software system for data fitting in dynamic
systems, Structural and Multidisciplinary Optimization, Vol. 23, No. 2, 153-169

[59] Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems - A Practical
Introduction with Applications and Software, Kluwer Academic Publishers

[60] Schittkowski K. (2004): PCOMP: A modeling language for nonlinear programs with
automatic differentiation, in: Modeling Languages in Mathematical Optimization,
J. Kallrath ed., Kluwer, Norwell, MA, 349-367

[61] Schittkowski K. (2004): 110 Mathcad worksheets for nonlinear programming, Re-
port, Dept. of Computer Science, University of Bayreuth, Germany

[62] Schittkowski K. (2004): 178 Mathcad worksheets for data fitting, Report, Dept. of
Computer Science, University of Bayreuth, Germany

19



[63] Schittkowski K. (2004): 295 Mathcad worksheets for differential equations, Report,
Dept. of Computer Science, University of Bayreuth, Germany

[64] Schittkowski K. (2004): 28 Mathcad worksheets for differential algebraic equations,
Report, Dept. of Computer Science, University of Bayreuth, Germany

[65] Schittkowski K. (2004): 17 Mathcad worksheets for partial differential algebraic
equations, Report, Dept. of Computer Science, University of Bayreuth, Germany

[66] Sheng Q., Khalic A.Q.M. (1999): A compound adaptive approach to degenerate non-
linear quenching problems, Numerical Methods for Partial Differential Equations,
Vol. 16, No. 1, 107-132

[67] Sincovec R.F., Madsen N.K. (1975): Software for nonlinear partial differential equa-
tions, ACM Transactions on Mathematical Software, Vol. 1, No. 3, 232-260

[68] Strikwerda J.C. (1997): Finite Difference Schemes and Partial Differential Equa-
tions, Chapman and Hall, New York

[69] Troeltzsch F. (1999): Some remarks on second order sufficient optimality condi-
tions for nonlinear elliptic and parabolic control problems, in: Proceedings of the
Workshop ’Stabilität und Sensitivität von Optimierungs- und Steuerungsproble-
men’, Burg (Spreewald), Germany, 21.-23.4.99

[70] Tveito A., Winther R. (1998): Introduction to Partial Differential Equations,
Springer, New York

[71] Ulbrich S. (1995): Stabile Randbedingungen und implizite entropiedissipative nu-
merische Verfahren für Anfangs-Randwertprobleme mehrdimensionaler nichtlin-
earer Systeme von Erhaltungsgleichungen mit Entropie, Dissertation, TU München,
Institut für Angewandte Mathematik und Statistik

[72] Vande Wouwer A., Saucec Ph., Schiesser W.E. (2001): Adaptive Methods of Lines,
Chapman and Hall/CRC, Boca Raton

[73] Verwer J.G., Blom J.G., Furzeland R.M., Zegeling P.A. (1989): A moving grid
method for one-dimensional PDEs based on the method of lines, in: Adaptive Meth-
ods for Partial Differential Equations, J.E. Flaherty, P.J. Paslow, M.S. Shephard,
J.D. Vasilakis eds., SIAM, Philadelphia, Pa., 160-175

[74] Verwer J.G., Blom J.G., Sanz-Serna J.M. (1989): An adaptive moving grid method
for one-dimensional systems of partial differential equations, Journal of Computa-
tional Physics, Vol. 82, 454-486

20



[75] Vreugdenhil C.B., Koren B. eds. (1993): Numerical Methods for Advection-Diffusion
Problems, Vieweg, Braunschweig

[76] Walas S.M. (1991): Modeling with Differential Equations in Chemical Engineering,
Butterworth-Heinemann, Boston

[77] Wang H., Al-Lawatia M., Sharpley R.C. (1999): A characteristic domain decompo-
sition and space-time local refinement method for first-order linear hyperbolic equa-
tions with interface, Numerical Methods for Partial Differential Equations, Vol. 15,
No. 1, 1-28

[78] Weizhong D., Nassar R. (1999): A finite difference scheme for solving the heat
transport equation at the microscale, Numerical Methods for Partial Differential
Equations, Vol. 15, No. 6, 697-708

[79] Wolmott P., Dewynne J.N., Howison S.D. (1993): Option Pricing: Mathematical
Models and Computation, Oxford Financial Press

[80] Yang H.Q., Przekwas A.J. (1992): A comparative study of advanced shock-capturing
schemes applied to Burgers’ equation, Journal of Computational Physics, Vol. 102,
139-159

[81] Zachmanoglou E.C., Thoe D.W. (1986): Introduction to Partial Differential Equa-
tions with Applications, Dover

21


	Introduction
	The Method of Lines
	A Mathcad Worksheet Example
	List of All Test Problems

